scholarly journals Dolphins Adjust Species-Specific Frequency Parameters to Compensate for Increasing Background Noise

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0121711 ◽  
Author(s):  
Elena Papale ◽  
Marco Gamba ◽  
Monica Perez-Gil ◽  
Vidal Martel Martin ◽  
Cristina Giacoma
2016 ◽  
Vol 113 (9) ◽  
pp. 2508-2513 ◽  
Author(s):  
Melville J. Wohlgemuth ◽  
Cynthia F. Moss

This study investigated auditory stimulus selectivity in the midbrain superior colliculus (SC) of the echolocating bat, an animal that relies on hearing to guide its orienting behaviors. Multichannel, single-unit recordings were taken across laminae of the midbrain SC of the awake, passively listening big brown bat, Eptesicus fuscus. Species-specific frequency-modulated (FM) echolocation sound sequences with dynamic spectrotemporal features served as acoustic stimuli along with artificial sound sequences matched in bandwidth, amplitude, and duration but differing in spectrotemporal structure. Neurons in dorsal sensory regions of the bat SC responded selectively to elements within the FM sound sequences, whereas neurons in ventral sensorimotor regions showed broad response profiles to natural and artificial stimuli. Moreover, a generalized linear model (GLM) constructed on responses in the dorsal SC to artificial linear FM stimuli failed to predict responses to natural sounds and vice versa, but the GLM produced accurate response predictions in ventral SC neurons. This result suggests that auditory selectivity in the dorsal extent of the bat SC arises through nonlinear mechanisms, which extract species-specific sensory information. Importantly, auditory selectivity appeared only in responses to stimuli containing the natural statistics of acoustic signals used by the bat for spatial orientation—sonar vocalizations—offering support for the hypothesis that sensory selectivity enables rapid species-specific orienting behaviors. The results of this study are the first, to our knowledge, to show auditory spectrotemporal selectivity to natural stimuli in SC neurons and serve to inform a more general understanding of mechanisms guiding sensory selectivity for natural, goal-directed orienting behaviors.


2019 ◽  
Vol 109 ◽  
Author(s):  
Evelina Leon ◽  
Paola M. Peltzer ◽  
Rodrigo Lorenzon ◽  
Rafael C. Lajmanovich ◽  
Adolfo H. Beltzer

ABSTRACT Increased anthropogenic-made sounds such as traffic noises contribute to acoustic pollution, which produces deleterious effect on song-vertebrates. We compared the advertisement call of Scinax nasicus (Cope, 1862) males in natural (as a reference or control, Site A) and Sites affected by traffic noises (Site B). Call structure was recorded and it was amplified in sonograms (software Raven Pro 1.5). Seven variables were measured on its advertisement call: duration (s), number of notes, number of pulses per note, maximum and minimum frequency (kHz), dominant frequency (kHz) and amplitude (dB). In addition, at each Site the background noise (the fundamental frequency, F0 and amplitude, dB) was measured. The amplitude of background noise reached higher values (68.02 dB) in Site B, while in Site A was lower (34.81 dB). Thus, the F0 in Site A was 6.28 kHz and in Site B it was 4.15 kHz. Frog call in noisy environment (Site B) were characterized by lesser duration (s) and number of pulses per note, higher maximum and dominant frequencies (kHz), lower minimum frequencies, and amplitude (dB) when compared with control environment (Site A). Our study highlights, that S. nasicus males shift their vocal structure in traffic noisy ponds, mainly by vocal “adjust” of their frequencies and amplitude to counteract masking effect. Finally, acoustic monitoring of anurans on noise environments should be considering the spatial, temporal and spectral overlap between noise and species-specific acoustic behaviour.


Author(s):  
M. Morell ◽  
E. Degollada ◽  
M. van der Schaar ◽  
J.M. Alonso ◽  
E. Delory ◽  
...  

Describing the auditory periphery of odontocetes is a key conservation issue to further assess the effect of acoustic pollution. Because all odontocetes produce species-specific frequency ranges, differences in echolocation signals should reflect anatomical differences in the auditory pathways. Here, we studied the ears of 15 odontocete species through 3D reconstructions from computerized tomography scans to extract standard measurements (bullae lengths/volumes and cochlear volume) and investigate the discriminatory weight of each of these variables as well as their relation to the species' hearing specificity. Any of the measurements appeared to be a good indicator of the species and could therefore be used to classify them. All the ear lengths and most volumes were strongly linearly correlated (r >0.9) in all species and the proportion between the tympanic and periotic bones appeared to remain constant. This constant ratio could be an indication of a functional relationship between both structures, and might suggest an active role of the odontocete middle ear during target acoustic detection, providing new information on the odontocete sound reception mechanism. Our results are generally consistent with previous studies, although here the coefficients of correlation between animal lengths and the total volume and lengths of the bullae were lower (0.77< r <0.86), indicating that the length of the animals may not be a primary parameter to take into account when defining ear measurements. These results suggest that the measurements described characterize standard ears which could be used as a morphological basis for further species-specific acoustic comparison.


Reproduction ◽  
2018 ◽  
Vol 155 (2) ◽  
pp. R105-R119 ◽  
Author(s):  
Minerva Ferrer-Buitrago ◽  
Davina Bonte ◽  
Petra De Sutter ◽  
Luc Leybaert ◽  
Björn Heindryckx

Oocyte activation is a calcium (Ca2+)-dependent process that has been investigated in depth, in particular, regarding its impact on assisted reproduction technology (ART). Following a standard model of signal transduction, Ca2+drives the meiotic progression upon fertilization in all species studied to date. However, Ca2+changes during oocyte activation are species specific, and they can be classified in two modalities based on the pattern defined by the Ca2+signature: a single Ca2+transient (e.g. amphibians) or repetitive Ca2+transients called Ca2+oscillations (e.g. mammals). Interestingly, assisted oocyte activation (AOA) methods have highlighted the ability of mammalian oocytes to respond to single Ca2+transients with normal embryonic development. In this regard, there is evidence supporting that cellular events during the process of oocyte activation are initiated by different number of Ca2+oscillations. Moreover, it was proposed that oocyte activation and subsequent embryonic development are dependent on the total summation of the Ca2+peaks, rather than to a specific frequency pattern of Ca2+oscillations. The present review aims to demonstrate the complexity of mammalian oocyte activation by describing the series of Ca2+-linked physiological events involved in mediating the egg-to-embryo transition. Furthermore, mechanisms of AOA and the limitations and benefits associated with the application of different activation agents are discussed.


Author(s):  
D.R. Ensor ◽  
C.G. Jensen ◽  
J.A. Fillery ◽  
R.J.K. Baker

Because periodicity is a major indicator of structural organisation numerous methods have been devised to demonstrate periodicity masked by background “noise” in the electron microscope image (e.g. photographic image reinforcement, Markham et al, 1964; optical diffraction techniques, Horne, 1977; McIntosh,1974). Computer correlation analysis of a densitometer tracing provides another means of minimising "noise". The correlation process uncovers periodic information by cancelling random elements. The technique is easily executed, the results are readily interpreted and the computer removes tedium, lends accuracy and assists in impartiality.A scanning densitometer was adapted to allow computer control of the scan and to give direct computer storage of the data. A photographic transparency of the image to be scanned is mounted on a stage coupled directly to an accurate screw thread driven by a stepping motor. The stage is moved so that the fixed beam of the densitometer (which is directed normal to the transparency) traces a straight line along the structure of interest in the image.


Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.


2020 ◽  
Vol 29 (3) ◽  
pp. 419-428
Author(s):  
Jasleen Singh ◽  
Karen A. Doherty

Purpose The aim of the study was to assess how the use of a mild-gain hearing aid can affect hearing handicap, motivation, and attitudes toward hearing aids for middle-age, normal-hearing adults who do and do not self-report trouble hearing in background noise. Method A total of 20 participants (45–60 years of age) with clinically normal-hearing thresholds (< 25 dB HL) were enrolled in this study. Ten self-reported difficulty hearing in background noise, and 10 did not self-report difficulty hearing in background noise. All participants were fit with mild-gain hearing aids, bilaterally, and were asked to wear them for 2 weeks. Hearing handicap, attitudes toward hearing aids and hearing loss, and motivation to address hearing problems were evaluated before and after participants wore the hearing aids. Participants were also asked if they would consider purchasing a hearing aid before and after 2 weeks of hearing aid use. Results After wearing the hearing aids for 2 weeks, hearing handicap scores decreased for the participants who self-reported difficulty hearing in background noise. No changes in hearing handicap scores were observed for the participants who did not self-report trouble hearing in background noise. The participants who self-reported difficulty hearing in background noise also reported greater personal distress from their hearing problems, were more motivated to address their hearing problems, and had higher levels of hearing handicap compared to the participants who did not self-report trouble hearing in background noise. Only 20% (2/10) of the participants who self-reported trouble hearing in background noise reported that they would consider purchasing a hearing aid after 2 weeks of hearing aid use. Conclusions The use of mild-gain hearing aids has the potential to reduce hearing handicap for normal-hearing, middle-age adults who self-report difficulty hearing in background noise. However, this may not be the most appropriate treatment option for their current hearing problems given that only 20% of these participants would consider purchasing a hearing aid after wearing hearing aids for 2 weeks.


2008 ◽  
Vol 18 (1) ◽  
pp. 19-24
Author(s):  
Erin C. Schafer

Children who use cochlear implants experience significant difficulty hearing speech in the presence of background noise, such as in the classroom. To address these difficulties, audiologists often recommend frequency-modulated (FM) systems for children with cochlear implants. The purpose of this article is to examine current empirical research in the area of FM systems and cochlear implants. Discussion topics will include selecting the optimal type of FM receiver, benefits of binaural FM-system input, importance of DAI receiver-gain settings, and effects of speech-processor programming on speech recognition. FM systems significantly improve the signal-to-noise ratio at the child's ear through the use of three types of FM receivers: mounted speakers, desktop speakers, or direct-audio input (DAI). This discussion will aid audiologists in making evidence-based recommendations for children using cochlear implants and FM systems.


Sign in / Sign up

Export Citation Format

Share Document