scholarly journals Correction: Hexon Modification to Improve the Activity of Oncolytic Adenovirus Vectors against Neoplastic and Stromal Cells in Pancreatic Cancer

PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0123844 ◽  
Author(s):  
PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0117254 ◽  
Author(s):  
Tanja Lucas ◽  
Karim Benihoud ◽  
Frédéric Vigant ◽  
Christoph Q. Andreas Schmidt ◽  
Max G. Bachem ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Alessandra Righetti ◽  
Matteo Giulietti ◽  
Berina Šabanović ◽  
Giulia Occhipinti ◽  
Giovanni Principato ◽  
...  

CXCL12 is a chemokine that acts through CXCR4 and ACKR3 receptors and plays a physiological role in embryogenesis and haematopoiesis. It has an important role also in tumor development, since it is released by stromal cells of tumor microenvironment and alters the behavior of cancer cells. Many studies investigated the roles of CXCL12 in order to understand if it has an anti- or protumor role. In particular, it seems to promote tumor invasion, proliferation, angiogenesis, epithelial to mesenchymal transition (EMT), and metastasis in pancreatic cancer. Nevertheless, some evidence shows opposite functions; therefore research on CXCL12 is still ongoing. These discrepancies could be due to the presence of at least six CXCL12 splicing isoforms, each with different roles. Interestingly, three out of six variants have the highest levels of expression in the pancreas. Here, we report the current knowledge about the functions of this chemokine and then focus on pancreatic cancer. Moreover, we discuss the methods applied in recent studies in order to understand if they took into account the existence of the CXCL12 isoforms.


2014 ◽  
Vol 192 ◽  
pp. 284-293 ◽  
Author(s):  
Yuki Yamamoto ◽  
Nobuyoshi Hiraoka ◽  
Naoko Goto ◽  
Yosei Rin ◽  
Kazuki Miura ◽  
...  

2018 ◽  
Vol 434 ◽  
pp. 56-69 ◽  
Author(s):  
Callum Baird Nattress ◽  
Gunnel Halldén

2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Elodie Roger ◽  
Sylvie Martel ◽  
Adrien Bertrand-Chapel ◽  
Arnaud Depollier ◽  
Nicolas Chuvin ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is one of the solid tumors with the poorest prognosis. The stroma of this tumor is abundant and composed of extracellular matrix and stromal cells (including cancer-associated fibroblasts and immune cells). Nerve fibers invading this stroma represent a hallmark of PDAC, involved in neural remodeling, which participates in neuropathic pain, cancer cell dissemination and tumor relapse after surgery. Pancreatic cancer-associated neural remodeling is regulated through functional interplays mediated by physical and molecular interactions between cancer cells, nerve cells and surrounding Schwann cells, and other stromal cells. In the present study, we show that Schwann cells (glial cells supporting peripheral neurons) can enhance aggressiveness (migration, invasion, tumorigenicity) of pancreatic cancer cells in a transforming growth factor beta (TGFβ)-dependent manner. Indeed, we reveal that conditioned medium from Schwann cells contains high amounts of TGFβ able to activate the TGFβ-SMAD signaling pathway in cancer cells. We also observed in human PDAC samples that high levels of TGFβ signaling activation were positively correlated with perineural invasion. Secretome analyses by mass spectrometry of Schwann cells and pancreatic cancer cells cultured alone or in combination highlighted the central role of TGFβ in neuro-epithelial interactions, as illustrated by proteomic signatures related to cell adhesion and motility. Altogether, these results demonstrate that Schwann cells are a meaningful source of TGFβ in PDAC, which plays a crucial role in the acquisition of aggressive properties by pancreatic cancer cells.


Sign in / Sign up

Export Citation Format

Share Document