scholarly journals A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens

PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128185 ◽  
Author(s):  
Monica Konar ◽  
Raffaella Rossi ◽  
Helen Walter ◽  
Rolando Pajon ◽  
Peter T. Beernink
2010 ◽  
Vol 17 (7) ◽  
pp. 1074-1078 ◽  
Author(s):  
Peter T. Beernink ◽  
Jutamas Shaughnessy ◽  
Sanjay Ram ◽  
Dan M. Granoff

ABSTRACT Meningococcal factor H-binding protein (fHbp) is a promising antigen that is part of two vaccines in clinical development. The protein specifically binds human complement factor H (fH), which downregulates complement activation on the bacterial surface and enables the organism to evade host defenses. In humans, the vaccine antigen forms a complex with fH, which may affect anti-fHbp antibody repertoire and decrease serum bactericidal activity by covering important fHbp epitopes. In a recent study, fHbp residues in contact with fH were identified from a crystal structure. Two fHbp glutamate residues that mediated ion-pair interactions with fH were replaced with alanine, and the resulting E218A/E239A mutant no longer bound the fH fragment. In the present study, we generated the E218A/E239A mutant recombinant protein and confirmed the lack of fH binding. By enzyme-linked immunosorbent assay (ELISA), the mutant fHbp showed similar respective concentration-dependent inhibition of binding of four bactericidal anti-fHbp monoclonal antibodies (MAbs) to fHbp, compared with inhibition by the soluble wild-type protein. In two mouse strains, the mutant fHbp elicited up to 4-fold-lower IgG anti-fHbp antibody titers and up to 20-fold-lower serum bactericidal titers than those elicited by the wild-type fHbp vaccine. Thus, although introduction of the two alanine substitutions to eliminate fH binding did not appear to destabilize the molecule globally, the mutations resulted in decreased immunogenicity in mouse models in which neither the mutant nor the wild-type control vaccine bound fH. These results cast doubt on the vaccine potential in humans of this mutant fHbp.


2016 ◽  
Vol 84 (6) ◽  
pp. 1735-1742 ◽  
Author(s):  
Raffaella Rossi ◽  
Monica Konar ◽  
Peter T. Beernink

Neisseria meningitidiscauses cases of bacterial meningitis and sepsis. Factor H binding protein (FHbp) is a component of two licensed meningococcal serogroup B vaccines. FHbp recruits the complement regulator factor H (FH) to the bacterial surface, which inhibits the complement alternative pathway and promotes immune evasion. Binding of human FH impairs the protective antibody responses to FHbp, and mutation of FHbp to decrease binding of FH can increase the protective responses. In a previous study, we identified two amino acid substitutions in FHbp variant group 2 that increased its thermal stability by 21°C and stabilized epitopes recognized by protective monoclonal antibodies (MAbs). Our hypothesis was that combining substitutions to increase stability and decrease FH binding would increase protective antibody responses in the presence of human FH. In the present study, we generated four new FHbp single mutants that decreased FH binding and retained binding of anti-FHbp MAbs and immunogenicity in wild-type mice. From these mutants, we selected two, K219N and G220S, to combine with the stabilized double-mutant FHbp antigen. The two triple mutants decreased FH binding >200-fold, increased the thermal stability of the N-terminal domain by 21°C, and bound better to an anti-FHbp MAb than the wild-type FHbp. In human-FH-transgenic mice, the FHbp triple mutants elicited 8- to 15-fold-higher protective antibody responses than the wild-type FHbp antigen. Collectively, the data suggest that mutations to eliminate binding of human FH and to promote conformational stability act synergistically to optimize FHbp immunogenicity.


2015 ◽  
Vol 14 (4) ◽  
pp. 493-503 ◽  
Author(s):  
Nathan James Brendish ◽  
Robert Charles Read

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 264 ◽  
Author(s):  
Emma Ispasanie ◽  
Gerd Pluschke ◽  
Abraham Hodgson ◽  
Ali Sie ◽  
Calman MacLennan ◽  
...  

Neisseria meningitidis is a major cause of bacterial meningitis and a considerable health problem in the 25 countries of the ‘African Meningitis Belt’ that extends from Senegal in West Africa to Ethiopia in the East. Approximately 80% of cases of meningococcal meningitis in Africa have been caused by strains belonging to capsular serogroup A. After the introduction of a serogroup A conjugate polysaccharide vaccine, MenAfriVac™, that began in December 2010, the incidence of meningitis due to serogroup A has markedly declined in this region. Currently, serogroup W of N. meningitidis accounts for the majority of cases. Vaccines based on sub-capsular antigens, such as Generalized Modules for Membrane Antigens (GMMA), are under investigation for use in Africa. To analyse the antigenic properties of a serogroup W wave of colonisation and disease, we investigated the molecular diversity of the protein vaccine antigens PorA, Neisserial Adhesin A (NadA), Neisserial heparin-binding antigen (NHBA) and factor H binding protein (fHbp) of 31 invasive and carriage serogroup W isolates collected as part of a longitudinal study from Ghana and Burkina Faso between 2003 and 2009. We found that the isolates all expressed fHbp variant 2 ID 22 or 23, differing from each other by only one amino acid, and a single PorA subtype of P1.5,2. Of the isolates, 49% had a functional nhbA gene and 100% had the nadA allele 3, which contained the insertion sequence IS1301 in five isolates. Of the W isolates tested, 41% had high fHbp expression when compared with a reference serogroup B strain, known to be a high expresser of fHbp variant 2. Our results indicate that in this collection of serogroup W isolates, there is limited antigenic diversification over time of vaccine candidate outer membrane proteins (OMP), thus making them promising candidates for inclusion in a protein-based vaccine against meningococcal meningitis for Africa.


2009 ◽  
Vol 200 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Ellen Murphy ◽  
Lubomira Andrew ◽  
Kwok‐Leung Lee ◽  
Deborah A. Dilts ◽  
Lorna Nunez ◽  
...  

2006 ◽  
Vol 13 (7) ◽  
pp. 758-763 ◽  
Author(s):  
Peter T. Beernink ◽  
Arunas Leipus ◽  
Dan M. Granoff

ABSTRACT The most important antigen component of a promising multicomponent group B meningococcal recombinant protein vaccine is based on genome-derived neisserial antigen 1870, which recently was renamed factor H-binding protein (FHBP) to reflect one of its critical functions as a complement regulatory protein. Neisseria meningitidis strains can be subdivided into three FHBP variant groups based on divergence of FHBP amino acid sequences. Within each variant group, amino acid sequences are >90% conserved. To develop an FHBP-based group B vaccine, it is important to know the distribution of FHBP variant 1, 2, and 3 strains in different geographic regions, since antibodies against FHBP are bactericidal against strains within the homologous group but show minimal activity against strains from other groups. We have devised a high-throughput, quantitative PCR-based method that allows rapid and precise assignment of FHBP genes into each of the three major variant lineages. Among 48 group B isolates from patients hospitalized in California in 2003 to 2004, 83%, 13%, and 4%, respectively, had variant 1, 2, and 3 genes. Thus, a vaccine based on the variant 1 protein has the potential to prevent the majority of cases of group B disease. The quantitative PCR-based method will be useful for determining and monitoring the prevalence of meningococcal isolates with genes encoding different FHBP variant proteins. The technique also is suitable for monitoring variation of genes encoding other protein antigens targeted for vaccination.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Gowrisankar Rajam ◽  
Maria Stella ◽  
Ellie Kim ◽  
Simon Paulos ◽  
Giuseppe Boccadifuoco ◽  
...  

ABSTRACT The meningococcal antigen typing system (MATS) is an enzyme-linked immunosorbent assay (ELISA)-based system that assesses the levels of expression and immune reactivity of the three recombinant MenB-4C antigens and, in conjunction with PorA variable 2 (VR2) sequencing, provides an estimate of the susceptibility of NmB isolates to killing by MenB-4C-induced antibodies. MATS assays or similar antigen phenotype analyses assume importance under conditions in which analyses of vaccine coverage predictions are not feasible with existing strategies, including large efficacy trials or functional antibody screening of an exhaustive strain panel. MATS screening of a panel of NmB U.S. isolates (n = 442) predicts high MenB-4C vaccine coverage in the United States. Neisseria meningitidis is the most common cause of bacterial meningitis in children and young adults worldwide. A 4-component vaccine against N. meningitidis serogroup B (MenB) disease (MenB-4C [Bexsero]; GSK) combining factor H binding protein (fHBP), neisserial heparin binding protein (NHBA), neisserial adhesin A (NadA), and PorA-containing outer membrane vesicles was recently approved for use in the United States and other countries worldwide. Because the public health impact of MenB-4C in the United States is unclear, we used the meningococcal antigen typing system (MATS) to assess the strain coverage in a panel of strains representative of serogroup B (NmB) disease in the United States. MATS data correlate with killing in the human complement serum bactericidal assay (hSBA) and predict the susceptibility of NmB strains to killing in the hSBA, the accepted correlate of protection for MenB-4C vaccine. A panel of 442 NmB United States clinical isolates (collected in 2000 to 2008) whose data were down weighted with respect to the Oregon outbreak was selected from the Active Bacterial Core Surveillance (ABCs; CDC, Atlanta, GA) laboratory. MATS results examined to determine strain coverage were linked to multilocus sequence typing and antigen sequence data. MATS predicted that 91% (95% confidence interval [CI95], 72% to 96%) of the NmB strains causing disease in the United States would be covered by the MenB-4C vaccine, with the estimated coverage ranging from 88% to 97% by year with no detectable temporal trend. More than half of the covered strains could be targeted by two or more antigens. NHBA conferred coverage to 83% (CI95, 45% to 93%) of the strains, followed by factor H-binding protein (fHbp), which conferred coverage to 53% (CI95, 46% to 57%); PorA, which conferred coverage to 5.9%; and NadA, which conferred coverage to 2.5% (CI95, 1.1% to 5.2%). Two major clonal complexes (CC32 and CC41/44) had 99% strain coverage. The most frequent MATS phenotypes (39%) were fHbp and NHBA double positives. MATS predicts over 90% MenB-4C strain coverage in the United States, and the prediction is stable in time and consistent among bacterial genotypes. IMPORTANCE The meningococcal antigen typing system (MATS) is an enzyme-linked immunosorbent assay (ELISA)-based system that assesses the levels of expression and immune reactivity of the three recombinant MenB-4C antigens and, in conjunction with PorA variable 2 (VR2) sequencing, provides an estimate of the susceptibility of NmB isolates to killing by MenB-4C-induced antibodies. MATS assays or similar antigen phenotype analyses assume importance under conditions in which analyses of vaccine coverage predictions are not feasible with existing strategies, including large efficacy trials or functional antibody screening of an exhaustive strain panel. MATS screening of a panel of NmB U.S. isolates (n = 442) predicts high MenB-4C vaccine coverage in the United States.


2009 ◽  
Vol 386 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Maria Scarselli ◽  
Francesca Cantini ◽  
Laura Santini ◽  
Daniele Veggi ◽  
Sara Dragonetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document