scholarly journals Invertebrate Metacommunity Structure and Dynamics in an Andean Glacial Stream Network Facing Climate Change

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0136793 ◽  
Author(s):  
Sophie Cauvy-Fraunié ◽  
Rodrigo Espinosa ◽  
Patricio Andino ◽  
Dean Jacobsen ◽  
Olivier Dangles
2021 ◽  
Author(s):  
Anna Maria De Girolamo ◽  
Youssef Brouziyne ◽  
Lahcen Benaabidate ◽  
Aziz Aboubdillah ◽  
Ali El Bilali ◽  
...  

<p>The non-perennial streams and rivers are predominant in the Mediterranean region and play an important ecological role in the ecosystem diversity in this region. This class of streams is particularly vulnerable to climate change effects that are expected to amplify further under most climatic projections. Understanding the potential response of the hydrologic regime attributes to climatic stress helps in planning better conservation and management strategies. Bouregreg watershed (BW) in Morocco, is a strategic watershed for the region with a developed non-perennial stream network, and with typical assets and challenges of most Mediterranean watersheds. In this study, a hybrid modeling approach, based on the Soil and Water Assessment Tool (SWAT) model and Indicator of Hydrologic Alteration (IHA) program, was used to simulate the response of BW's stream network to climate change during the period: 2035-2050. Downscaled daily climate data from the global circulation model CNRM-CM5 were used to force the hybrid modeling framework over the study area. Results showed that, under the changing climate, the magnitude of the alteration will be different across the stream network; however, almost the entire flow regime attributes will be affected. Under the RCP8.5 scenario, the average number of zero-flow days will rise up from 3 to 17.5 days per year in some streams, the timing of the maximum flow was calculated to occur earlier by 17 days than in baseline, and the timing of the minimal flow should occur later by 170 days in some streams. The used modeling approach in this study contributed in identifying the most vulnerable streams in the BW to climate change for potential prioritization in conservation plans.</p>


2022 ◽  
pp. 549-586
Author(s):  
Ángel Gálvez ◽  
Anne E. Magurran ◽  
Xavier Armengol ◽  
Sukonthip Savatenalinton ◽  
Francesc Mesquita-Joanes

Hydrobiologia ◽  
2008 ◽  
Vol 603 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Michael J. Winterbourn ◽  
Sarah Cadbury ◽  
Christiane Ilg ◽  
Alexander M. Milner

2016 ◽  
Vol 22 (7) ◽  
pp. 783-796 ◽  
Author(s):  
Michael S. Ross ◽  
Jay P. Sah ◽  
Pablo L. Ruiz ◽  
Adam A. Spitzig ◽  
Suresh C. Subedi

2012 ◽  
Vol 82 (2) ◽  
pp. 449-458 ◽  
Author(s):  
Emma Göthe ◽  
David G. Angeler ◽  
Leonard Sandin

2018 ◽  
Author(s):  
Adam S. Ward ◽  
◽  
Noah Schmadel ◽  
Steven M. Wondzell ◽  
Sherri Johnson

2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document