scholarly journals Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel

PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0141213 ◽  
Author(s):  
Aaiza Gul ◽  
Ilyas Khan ◽  
Sharidan Shafie ◽  
Asma Khalid ◽  
Arshad Khan
Author(s):  
Wan Nor Zaleha Amin ◽  
Noraihan Afiqah Rawi ◽  
Mohd Ariff Admon ◽  
Sharidan Shafie

In this study, the effect of g-jitter fully developed heat transfer by mixed convection flow of nanofluid in a vertical channel is investigated. The nanoparticles of aluminum oxide and copper with water as a base fluid are used in this study. The equations corresponding to this study are solved analytically to find the exact solutions. The results of velocity and temperature profiles with the influence of physical parameters such as mixed convection, oscillation, temperature ratio and volume fraction of the nanoparticles are plotted and analyze in details. The behavior of steady state flow is also investigated. Results shown that as mixed convection, oscillation, and temperature ratio increased, the velocity profiles increased. The conductivity and viscosity of the nanofluid are also increased due to the increase of the volume fraction of nanoparticles in the water base fluid.


2020 ◽  
Vol 45 (4) ◽  
pp. 373-383
Author(s):  
Nepal Chandra Roy ◽  
Sadia Siddiqa

AbstractA mathematical model for mixed convection flow of a nanofluid along a vertical wavy surface has been studied. Numerical results reveal the effects of the volume fraction of nanoparticles, the axial distribution, the Richardson number, and the amplitude/wavelength ratio on the heat transfer of Al2O3-water nanofluid. By increasing the volume fraction of nanoparticles, the local Nusselt number and the thermal boundary layer increases significantly. In case of \mathrm{Ri}=1.0, the inclusion of 2 % and 5 % nanoparticles in the pure fluid augments the local Nusselt number, measured at the axial position 6.0, by 6.6 % and 16.3 % for a flat plate and by 5.9 % and 14.5 %, and 5.4 % and 13.3 % for the wavy surfaces with an amplitude/wavelength ratio of 0.1 and 0.2, respectively. However, when the Richardson number is increased, the local Nusselt number is found to increase but the thermal boundary layer decreases. For small values of the amplitude/wavelength ratio, the two harmonics pattern of the energy field cannot be detected by the local Nusselt number curve, however the isotherms clearly demonstrate this characteristic. The pressure leads to the first harmonic, and the buoyancy, diffusion, and inertia forces produce the second harmonic.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 225-235
Author(s):  
Asifa Ilyas ◽  
Muhammad Ashraf

The main aim of the present work is to highlight the significances of periodic mixed convection flow and heat transfer characteristics along the surface of magnetized cone by exerting magnetic field exact at the surface of the cone. The numerical simulations of coupled non-dimensional equations are computed in terms of velocity field, temperature and magnetic field concentration and then used to examine the periodic components of skin friction, ?w, heat transfer, qw, and current density, jw, for various governing parameters. A nice periodic behavior of heat transfer qw is concluded for each value of mixed convection parameter, ?, but maximum periodicity is sketched at ? = 50. It is also computed that the lower value of magnetic Prandtl number ? = 0.1 gets poor amplitude in current density but highest amplitude is sketched for higher ? = 0.5. The behavior of heat and fluid-flow in the pres?ence of aligned magnetic field is associated with the phase angle and amplitude of oscillation. It is also noted that due to the increase in magnetic force parameter, ?, there are wave like disturbances generate within the fluid layers. These disturbances are basically hydromagnetic waves which becomes more prominent as the strength of magnetic force parameter is increased.


Sign in / Sign up

Export Citation Format

Share Document