scholarly journals An Investigation on Formaldehyde Emission Characteristics of Wood Building Materials in Chinese Standard Tests: Product Emission Levels, Measurement Uncertainties, and Data Correlations between Various Tests

PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0144374 ◽  
Author(s):  
Wei Song ◽  
Yang Cao ◽  
Dandan Wang ◽  
Guojun Hou ◽  
Zaihua Shen ◽  
...  
2020 ◽  
pp. 1420326X2090891
Author(s):  
Yujin Kang ◽  
Sung-Jun Yoo ◽  
Kazuhide Ito

The static headspace method using a small enclosed chamber has been extensively used to estimate the emission characteristics of formaldehyde, e.g., emission rates from building materials. The formation of the transient formaldehyde concentration by emission, diffusion and sorption in a small confined chamber was investigated using three-dimensional modelling and numerical analyses. Here, five types of glass desiccators were adopted as the small chamber for the headspace method. The inner geometries of the desiccator with the emission source (the building material) and sorbent (water in a Petri dish) were precisely modelled. Transient numerical analyses were performed to determine the formaldehyde emission from different building materials of the external (evaporative) diffusion control type, molecular diffusion and sorption on the water in the confined desiccators. In order to clarify the effect of the desiccator inner geometry on the formaldehyde emission characteristics, the equivalent diffusion length ( Ld) concept, which could be identified as the representative one-dimensional diffusion length scale, was proposed. The results of the numerical analyses showed that Ld and the formaldehyde concentration in the sorbent solution over a 24 h numerical experiment were significantly affected by the desiccator geometry. These results confirmed that the calibration of the emission rate with external diffusion control using Ld is appropriate when measuring the formaldehyde emission rate in an enclosed desiccator with different geometries.


2010 ◽  
Vol 160-162 ◽  
pp. 1245-1252
Author(s):  
Zhen Zhong Gao ◽  
Li Tao Guan ◽  
Jin Sun ◽  
Deng Yun Tu

Hexamethoxymethyl melamine (HMMM) was used to modify UF resins to obtain good performance with low formaldehyde emission. The effect of urea to formaldehyde ratio, HMMM content on the properties of UF resin was studied in detail. The results suggested that urea to formaldehyde ratio to be 1:0.9 and 20% HMMM content is the optimum formulation to afford desired UF resin. The viscosity, solidification time, bond strength and formaldehyde emission of the modified UF resins were also studied. The results revealed that the performance of the modified UF achieved the chinese standard.


2007 ◽  
Vol 11 (2) ◽  
pp. 53-66
Author(s):  
Wan Chow ◽  
Wai Leung

Performance-based design for passive building fire safety provisions is accepted by the authority in Hong Kong since 1998. This is also known as the "fire engineering approach", though the performance-based fire code is not yet available. To cope with the use of new building materials, appropriate flame spread tests on materials and components should be specified. After reviewing four standard tests in the literature, i.e. ASTM E1321-97a, BS476: Part 7: 1997, ASTM E84-99/NFPA 255, and ISO 9705: 1993(E), it appears that ISO 9705: 1993(E) is suitable for assessing the flame spread of materials. .


2007 ◽  
Vol 41 (15) ◽  
pp. 3203-3216 ◽  
Author(s):  
Yinping Zhang ◽  
Xiaoxi Luo ◽  
Xinke Wang ◽  
Ke Qian ◽  
Rongyi Zhao

Sign in / Sign up

Export Citation Format

Share Document