Correlation between formaldehyde emission characteristics in enclosed desiccators with five different geometries

2020 ◽  
pp. 1420326X2090891
Author(s):  
Yujin Kang ◽  
Sung-Jun Yoo ◽  
Kazuhide Ito

The static headspace method using a small enclosed chamber has been extensively used to estimate the emission characteristics of formaldehyde, e.g., emission rates from building materials. The formation of the transient formaldehyde concentration by emission, diffusion and sorption in a small confined chamber was investigated using three-dimensional modelling and numerical analyses. Here, five types of glass desiccators were adopted as the small chamber for the headspace method. The inner geometries of the desiccator with the emission source (the building material) and sorbent (water in a Petri dish) were precisely modelled. Transient numerical analyses were performed to determine the formaldehyde emission from different building materials of the external (evaporative) diffusion control type, molecular diffusion and sorption on the water in the confined desiccators. In order to clarify the effect of the desiccator inner geometry on the formaldehyde emission characteristics, the equivalent diffusion length ( Ld) concept, which could be identified as the representative one-dimensional diffusion length scale, was proposed. The results of the numerical analyses showed that Ld and the formaldehyde concentration in the sorbent solution over a 24 h numerical experiment were significantly affected by the desiccator geometry. These results confirmed that the calibration of the emission rate with external diffusion control using Ld is appropriate when measuring the formaldehyde emission rate in an enclosed desiccator with different geometries.

2015 ◽  
Vol 775 ◽  
pp. 279-282
Author(s):  
Lin Lin Huang ◽  
Han Cheng Juan

Regardless of material regulations at the supply source or post-construction quality inspection systems, certain levels of model management systems have been developed. However, in the hospital waiting room, the measured formaldehyde concentration in the air reached 0.99 ppm, which is 12 times higher than that of the standard value. The formaldehyde emission rates measured in the building materials of the private housings or hospital waiting room ranged from 158 to 238 μg/m2∙h, which exceed both the ABSL and BSMI standards. Moreover, the decoration locations, construction staff, and construction behaviors varied despite their claims of using low formaldehyde-emitting materials. This study compiled the current objectives and regulations established by various supervising authorities and implemented a supporting management system in material grading, amount of material usage, ventilation path control, and ventilation effectiveness for facilitating the promotion of healthy indoor air quality, thereby enhancing public health.


2012 ◽  
Vol 534 ◽  
pp. 253-260
Author(s):  
Di Ming Lou ◽  
Yi Zhou Zhao ◽  
Yuan Hu Zhi ◽  
Pi Qiang Tan ◽  
Yan Juan Zhu

An on-board experimental research was made on diesel passenger vehicles fueled with national IV diesel, gas-to-liquid (GTL) fuel and three other different volume ratio of mixed fuel (G10D90, G20D80, G50D50) about the regularity of Particulate Matter (PM) emission characteristics changing with velocity, acceleration and vehicle specific power (VSP). The experimental results show that: PM emission rate increases gradually with higher velocity; acceleration leads to the deterioration of emissions; curves concave at the point when VSP value equals zero. Moreover, the emission rate of particle number decreases 50% to 60% while that of particle mass decreases 30% to 45% when the volumetric mixture ratio of GTL fuel improves. It is obvious that GTL fuel improves the characteristics of PM emission significantly, making it one of the promising clean alternative fuel.


2011 ◽  
Vol 354-355 ◽  
pp. 231-235 ◽  
Author(s):  
Xue Jiao Xiao ◽  
Bao Qing Deng ◽  
Peng Zhang ◽  
Yun Lin Zang ◽  
Meng Ling Zhu ◽  
...  

This study aimed to investigate the influence of the paint film thickness on formaldehyde emission rates. A small-scale environmental chamber was set up to test the formaldehyde emission from wood lacquer with different thicknesses. In all experiments, the temperature, the airflow rate and the relative humidity were the same, which were set to 23 °C, 1000 L/s, 45 %, respectively. The emission rates of formaldehyde were calculated through the double exponential decay model. Results showed that the peak concentration was dependent of the paint film thickness. The thicker the film thickness was, the slower the emission rate was.


2017 ◽  
Vol 893 ◽  
pp. 369-374
Author(s):  
Hyun Tae Kim ◽  
Tae Woo Kim ◽  
Won Hwa Hong ◽  
Kang Guk Lee ◽  
Kim Kang Min

Recent studies have reported that indoor house dust contains a large volume of SVOC chemical substances such as phthalates. This study measured the SVOC emission rate from various types of building materials and conducted quantitative and qualitative analyses on the emitted substances. DBP and DEHP were detected in all building materials based on the result obtained from measuring the building materials produced in Japan, South Korea, and China. The DBP and DEHP emission rates (95 percentile) from the building materials used for the measurement in this study were 2.56 [μg/m2・h] and 11.63[μg/m2・h] respectively. Larger DBP and DEHP emission rate from building materials are believed to be the reason why a high level of DBP and DEHP is detected in house dust found in residential homes compared to other substances.


Sign in / Sign up

Export Citation Format

Share Document