scholarly journals Transcriptome and Expression Patterns of Chemosensory Genes in Antennae of the Parasitoid Wasp Chouioia cunea

PLoS ONE ◽  
2016 ◽  
Vol 11 (2) ◽  
pp. e0148159 ◽  
Author(s):  
Yanni Zhao ◽  
Fengzhu Wang ◽  
Xinyue Zhang ◽  
Suhua Zhang ◽  
Shilong Guo ◽  
...  
Author(s):  
Basman H. Al-Jalely ◽  
Penghao Wang ◽  
Yalin Liao ◽  
Wei Xu

Abstract Diadegma semiclausum is an important parasitoid wasp and widely used in the biological control of the diamondback moth, Plutella xylostella, one of the most destructive pests of cruciferous plants. Insect olfactory system is critical in guiding behaviors including feeding, mating, and oviposition, in which odorant binding proteins (OBPs) and odorant receptors (ORs) are two key components. However, limited attention has been paid to D. semiclausum olfactory genes. In this study, a transcriptome sequencing was performed on the RNA samples extracted from D. semiclausum male and female adult antennae. A total of 17 putative OBP and 67 OR genes were annotated and further compared to OBPs and ORs from P. xylostella, and other hemipteran parasitoid species. The expression patterns of D. semiclausum OBPs between male and female antennae were examined using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR. Six OBPs (DsemOBP 6, 7, 8, 9, 10, and 14) demonstrated significantly higher expression levels in females than in males, which may assist in female D. semiclausum host-seeking and oviposition behaviors. This study advances our understanding of the olfactory system of D. semiclausum at the molecular level and paves the way for future functional studies aiming at increasing the efficacy to control P. xylostella by using D. semiclausum.


2020 ◽  
Vol 117 ◽  
pp. 103286
Author(s):  
Lina Pan ◽  
Weifang Xiang ◽  
Zeyang Sun ◽  
Yixin Yang ◽  
Jiayi Han ◽  
...  

2017 ◽  
Vol 108 (5) ◽  
pp. 645-657 ◽  
Author(s):  
Z.-W. Kang ◽  
F.-H. Liu ◽  
R.-P. Pang ◽  
W.-B. Yu ◽  
X.-L. Tan ◽  
...  

AbstractThe bird cherry-oat aphid Rhopalosiphum padi (L.) is one of the most important wheat pests with polyphagia and autumn migrants. And, chemosensory genes were thought to play a key role in insect searching their hosts, food and mate. However, a systematic identification of the chemosensory genes in this pest has not been reported. Thus, in this study, we identified 14 odorant-binding proteins, nine chemosensory proteins, one sensory neuron membrane protein, 15 odorant receptors, 19 gustatory receptors and 16 ionotropic receptors from R. padi transcriptomes with a significantly similarity (E-value < 10−5) to known chemosensory genes in Acyrthosiphon pisum and Aphis gossypii. In addition, real-time quantitative polymerase chain reaction (RT-qPCR) was employed to determine the expression profiles of obtained genes. Among these obtained genes, we selected 23 chemosensory genes to analyze their expression patterns in different tissues, wing morphs and host plants. We found that except RpOBP1, RpOBP3, RpOBP4 and RpOBP5, the rest of the selected genes were highly expressed in the head with antennae compared with body without head and antennae. Besides that, the stimulation and depression of chemosensory genes by plant switch indicated that chemosensory genes might be involved in the plant suitability assessment. These results not only provide insights for the potential roles of chemosensory genes in plant search and perception of R. padi but also provide initial background information for the further research on the molecular mechanism of the polyphagia and autumn migrants of it. Furthermore, these chemosensory genes are also the candidate targets for pest management control in future.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 998
Author(s):  
Basman H. Al-Jalely ◽  
Wei Xu

Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) is a tiny natural egg parasitoid of several agricultural pest insects, which has been widely used in the biological control for Plutella xylostella, Helicoverpa armigera, Spodoptera frugiperda and Ectomyelois ceratoniae. However, limited studies have been conducted on T. pretiosum olfactory system, which is critical in regulating insect behaviours. In this study, T. pretiosum adult antennae were investigated under ascanning electron microscopy (SEM). Four types of olfactory sensilla were observed, including chaetica sensilla (CS), trichoid sensilla (TS), faleate sensilla (FS) and placoid sensilla (PS). Using T. pretiosum genome, 22 putative odorant binding proteins (OBPs) and 105 odorant receptors (ORs) were identified, which were further compared with olfactory genes of Apis mellifera, Nasonia vitripennis and Diachasma alloeum. The expression patterns of OBPs between T. pretiosum male and female adults were examined by quantitative real time PCR (qRT-PCR) approaches. Three female-specific OBPs (TpreOBP19, TpreOBP15 and TpreOBP3) were identified, which may play crucial roles in T. pretiosum host-seeking and oviposition behaviours. This study enriches our knowledge of T. pretiosum olfactory genes and improves our understanding of its olfactory system.


2021 ◽  
Vol 53 (5) ◽  
Author(s):  
Shuang Yang ◽  
Huiting Zhao ◽  
Xuewen Zhang ◽  
Kai Xu ◽  
Lina Guo ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lina Pan ◽  
Meiqi Guo ◽  
Xin Jin ◽  
Zeyang Sun ◽  
Hao Jiang ◽  
...  

AbstractChouioia cunea (Yang) is an endoparasitic wasp which parasitizes pupae and thus plays an important role in the biological control of the fall webworm (Hyphantria cunea Drury), an important quarantine pest in the entire world and a major invasive pest in China. For the purposes of investigating which proteins are involved in the response of C. cunea to 1-Docecene, one of the chemical compounds of pupae of H. cunea with a significant attracting action to mated female C. cunea, 11.5 Gb transcriptome data was sequenced on the PacBio RS II platform from 1-day old C. cunea adults to generate a reference assembly. Afterwards, 46.88 Gb of clean RNA-Seq data were obtained to assess the transcriptional response of these insects before and after the stimulation with 1-Docecene. After removing redundancy using CD-HIT, a sequence structure analysis predicted 29,105 complete coding sequence (CDS) regions, 51,458 single-sequence repeats (SSRs), and 2,375 long non-coding RNAs. Based on the early transcriptome sequencing in our laboratory, we revealed some new sequences corresponding to chemosensory genes such as odorant binding proteins (OBPs), odorant receptor (OR), gustatory receptors(GRs). Results of quantitative real-time PCR experiments revealed that CcOBP7, CcOBP18, CcCSP4, CcOR2, and CcGR18 were up-regulated after 1-Dodecene stimulation. In addition, the expression of 31 genes, including 1 gene related to phospholipid biosynthesis and 2 genes related to transmembrane transport were up-regulated after 1-Dodecene stimulation; meanwhile, the expression of 22 genes, including 5 genes related to protein phosphorylation and protein serine/threonine kinase activity were significantly down-regulated after 1-Dodecene stimulation. These results suggest that the attraction of adult C. cunea to 1-dodecane is associated with the transmembrane signal transduction and dephosphorylation of some proteins. Our findings will provide useful targets for further studies on the molecular mechanism of host recognition in C. cunea.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Li Xu ◽  
Kai-Yue Tang ◽  
Xiao-Feng Chen ◽  
Yong Tao ◽  
Hong-Bo Jiang ◽  
...  

Abstract Background Olfactory systems take on important tasks to distinguish salient information from a complex olfactory environment, such as locating hosts, mating, aggression, selecting oviposition sites, and avoiding predators. The olfactory system of an adult insect consists of two pairs of main olfactory appendages on the head, the antennae, and the palps, which are covered with sensilla. Benzothiazole and 1-octen-3-ol could elicit oviposition behavior in gravid B. dorsalis are regarded as oviposition stimulants. However, the mechanism for how B. dorsalis percepts benzothiazole and 1-octen-3-ol still remains unknown. Results We conducted a comparative analysis of the antennal transcriptomes in different genders of B. dorsalis using Illumina RNA sequencing (RNA-seq). We identified a total of 1571 differentially expressed genes (DEGs) among the two sexes, including 450 female-biased genes and 1121 male-biased genes. Among these DEGs, we screened out 24 olfaction-related genes and validated them by qRT-PCR. The expression patterns of these genes in different body parts were further determined. In addition, we detected the expression profiles of the screened female-biased chemosensory genes in virgin and mated female flies. Furthermore, the oviposition stimulants-induced expression profilings were used to identify chemosensory genes potentially responsible for benzothiazole and 1-octen-3-ol perception in this fly. Conclusions The results from this study provided fundamental data of chemosensory DEGs in the B. dorsalis antenna. The odorant exposure assays we employed lay a solid foundation for the further research regarding the molecular mechanism of benzothiazole and 1-octen-3-ol mediated oviposition behavior in B. dorsalis.


Author(s):  
Giridhar Athrey ◽  
Zachary R Popkin-Hall ◽  
Willem Takken ◽  
Michel A Slotman

Abstract Because of its importance as a malaria vector, Anopheles coluzzii’s Coetzee & Wilkerson olfactory system has been studied extensively. Among this work is a series of studies comparing the expression of chemosensory genes in olfactory organs in females and/or males of these species. These have identified species- and female-biased chemosensory gene expression patterns. However, many questions remain about the role of chemosensation in male anopheline biology. To pave the way for future work we used RNAseq to compare chemosensory gene expression in the male maxillary palps of An. coluzzii and its sibling species An. quadriannulatus Theobald. As expected, the chemosensory gene repertoire is small in the male maxillary palps. Both species express the tuning receptors Or8 and Or28 at relatively high levels. The CO2 receptor genes Gr22-Gr24 are present in both species as well, although at much lower level than in females. Additionally, several chemoreceptors are species-specific. Gr37 and Gr52 are exclusive to An. coluzzii, whereas Or9 and Gr60 were detected only in An. quadriannulatus. Furthermore, several chemosensory genes show differential expression between the two species. Finally, several Irs, Grs, and Obps that show strong differential expression in the female palps, are absent or lowly expressed in the male palps. While many questions remain about the role of chemosensation in anopheline male biology, these results suggest that the male maxillary palps could have both a sex- and species-specific role in the perception of chemical stimuli. This work may guide future studies on the role of the male maxillary palp in these species.


Sign in / Sign up

Export Citation Format

Share Document