scholarly journals TetR Family Regulator brpT Modulates Biofilm Formation in Streptococcus sanguinis

PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169301 ◽  
Author(s):  
Jinlin Liu ◽  
Victoria N. Stone ◽  
Xiuchun Ge ◽  
Madison Tang ◽  
Fadi Elrami ◽  
...  
2017 ◽  
Vol 83 (24) ◽  
Author(s):  
Nyssa Cullin ◽  
Sylvio Redanz ◽  
Kirsten J. Lampi ◽  
Justin Merritt ◽  
Jens Kreth

ABSTRACT The overall health of the oral cavity is dependent on proper homeostasis between health-associated bacterial colonizers and bacteria known to promote dental caries. Streptococcus sanguinis is a health-associated commensal organism, a known early colonizer of the acquired tooth pellicle, and is naturally competent. We have shown that LytF, a competence-controlled murein hydrolase, is capable of inducing the release of extracellular DNA (eDNA) from oral bacteria. Precipitated LytF and purified LytF were used as treatments against planktonic cultures and biofilms. Larger amounts of eDNA were released from cultures treated with protein samples containing LytF. Additionally, LytF could affect biofilm formation and cellular morphology. Biofilm formation was significantly decreased in the lytF-complemented strain, in which increased amounts of LytF are present. The same strain also exhibited cell morphology defects in both planktonic cultures and biofilms. Furthermore, the LytF cell morphology phenotype was reproducible in wild-type cells using purified LytF protein. In sum, our findings demonstrate that LytF can induce the release of eDNA from oral bacteria, and they suggest that, without proper regulation of LytF, cells display morphological abnormalities that contribute to biofilm malformation. In the context of the oral biofilm, LytF may play important roles as part of the competence and biofilm development programs, as well as increasing the availability of eDNA. IMPORTANCE Streptococcus sanguinis, a commensal organism in the oral cavity and one of the pioneer colonizers of the tooth surface, is associated with the overall health of the oral environment. Our laboratory showed previously that, under aerobic conditions, S. sanguinis can produce H2O2 to inhibit the growth of bacterial species that promote dental caries. This production of H2O2 by S. sanguinis also induces the release of eDNA, which is essential for proper biofilm formation. Under anaerobic conditions, S. sanguinis does not produce H2O2 but DNA is still released. Determining how S. sanguinis releases DNA is thus essential to understand biofilm formation in the oral cavity.


2020 ◽  
Vol 1 (2) ◽  
pp. 87-99 ◽  
Author(s):  
Christofora Hanny Wijaya ◽  
Bernadeta RE Sari ◽  
Boy M Bachtiar

Streptococcus mutans were competing Streptococcus sanguinis in biofilm formation. As pioneer colonizer, S. sanguinis were able to control S. mutans growth. This study was aimed to explore the ability of sucrose and non-sucrose cajuputs candies (SCC and NSCC) in maintaining the antagonistic relationship between the indigenous oral flora when they grew as dual-species biofilms (S. sanguinis and S. mutans). The flavored candies (SCC and NSCC) contained cajuput and peppermint oils as the flavor which the volatile compounds had been identified. The unflavored candies were made similar to the flavored candy but excluding the flavor. The flavored candies, unflavored candies, and the control were exposed in vitro to the biofilms. The biofilms were examined for biofilm inhibition capacity, DNA amount, and the expression level of spxB mRNA. The biofilm inhibition by flavored candies were higher than the unflavored ones and were significantly different compared to the control. The flavored candies managed to decrease the total DNA amount in the biofilm, but unflavored samples did not. The qPCR assays showed that the exposure of candies did not alter the proportion of S. sanguinis DNA to S. mutans DNA in the biofilms. Meanwhile, spxB mRNA expression indicated the ability of S.sanguinis to control S. mutans growth.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yan Sun ◽  
Yihuai Pan ◽  
Yu Sun ◽  
Mingyun Li ◽  
Shengbin Huang ◽  
...  

The present study aimed at investigating the influence of norspermidine on the formation of dual-species biofilms composed of Streptococcus mutans (S. mutans) and Streptococcus sanguinis (S. sanguinis). Crystal violet assay was conducted to assess the formation of single-species biofilms of S. mutans and S. sanguinis, and the growth curve was carefully observed to monitor the growth of these two species of bacteria. Fluorescence in situ hybridization (FISH) and MTT array were used to analyze the composition and metabolic activity of the dual-species biofilms, respectively. Extracellular polysaccharides (EPS)/bacteria staining, anthrone method, and scanning electron microscopy (SEM) imaging were conducted to study the synthesis of EPS by dual-species biofilms. Lactic acid assay and pH were measured to detect dual-species biofilm acid production. We found that norspermidine had different effects on S. mutans and S. sanguinis including their growth and biofilm formation. Norspermidine regulated the composition of the dual-species biofilms, decreased the ratio of S. mutans in dual-species biofilms, and reduced the metabolic activity, EPS synthesis, and acid production of dual-species biofilms. Norspermidine regulated dual-species biofilms in an ecological way, suggesting that it may be a potent reagent for controlling dental biofilms and managing dental caries.


2021 ◽  
Vol 33 (3) ◽  
pp. 210
Author(s):  
Hendra Dian Adhita Dharsono ◽  
Denny Nurdin ◽  
Fajar Fatriadi ◽  
Yolanda Dwiutami Gondowidjojo ◽  
Ellizabeth Yunita ◽  
...  

Introduction: Streptococcus sanguinis is a commensal microorganism as well as a pioneer colony in forming dental plaque. Oral biofilm formation can be prevented by a mechanical cleaning procedure followed by the use of mouthwash. The current gold standard for mouthwash is chlorhexidine. Nevertheless, it has side effects that are not recommended for long-term use. Previous studies had proven that herbal-based mouthwashes such as basil leaves (Ocimum basilicum) and strawberry fruit (Fragaria x ananassa) have been shown to have antibacterial properties. The effectivity of antibacterial activity phenomenon in combined extracts has been reported in other studies. This research aims to observe the antibacterial potential of the F. x ananassa and O. basilicum extract combinations against S. sanguinis (ATCC 10556). Methods: The sample of this study was a combination of F. x ananassa and O. basilicum extract, which initially screened for their antibacterial activities. Antibacterial activities of F. x ananassa and O. basilicum extracts against S. sanguinis were observed using Kirby Bauer method, while Minimum Inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) by serial microdilution method. The 2% concentration from each extract was combined in 1:1, 1:2, and 2:1 volume ratio variations then tested for inhibitory zones, MIC, and MBC. Results: F. x ananassa extract had 0.125% and 0.25% for MIC and MBC respectively, while O. basilicum extract showed the value of MIC and MBC as 0.031% and 0.063% against S. sanguinis (ATCC 10556). The extract combinations in 1:1, 1:2, and 2:1 volume ratio variations showed 0.016% for MIC and 0.031% for MBC. Conclusions: It was concluded that combining extracts of 2 % F. x ananassa and 2% O. basilicum in various ratios were observably to have the antibacterial potential against S. sanguinis (ATCC 10556).


2006 ◽  
Vol 114 (4) ◽  
pp. 343-348 ◽  
Author(s):  
Rimondia S. Percival ◽  
Deirdre A. Devine ◽  
Monty S. Duggal ◽  
Sylvie Chartron ◽  
Philip D. Marsh

2008 ◽  
Vol 76 (6) ◽  
pp. 2551-2559 ◽  
Author(s):  
Xiuchun Ge ◽  
Todd Kitten ◽  
Zhenming Chen ◽  
Sehmi P. Lee ◽  
Cindy L. Munro ◽  
...  

ABSTRACT Streptococcus sanguinis is one of the pioneers in the bacterial colonization of teeth and is one of the most abundant species in the oral biofilm called dental plaque. S. sanguinis is also the most common viridans group streptococcal species implicated in infective endocarditis. To investigate the association of biofilm and endocarditis, we established a biofilm assay and examined biofilm formation with a signature-tagged mutagenesis library of S. sanguinis. Four genes that have not previously been associated with biofilm formation in any other bacterium, purB, purL, thrB, and pyrE, were putatively identified as contributing to in vitro biofilm formation in S. sanguinis. By examining 800 mutants for attenuation in the rabbit endocarditis model and for reduction in biofilm formation in vitro, we found some mutants that were both biofilm defective and attenuated for endocarditis. However, we also identified mutants with only reduced biofilm formation or with only attenuation in the endocarditis model. This result indicates that the ability to form biofilms in vitro is not associated with endocarditis virulence in vivo in S. sanguinis.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0151142 ◽  
Author(s):  
Xiuchun Ge ◽  
Xiaoli Shi ◽  
Limei Shi ◽  
Jinlin Liu ◽  
Victoria Stone ◽  
...  

Author(s):  
REINA HUTAURUK ◽  
DEWI FATMA SUNIARTI ◽  
WIDURINI DJOHAN

Objective: The purpose of the current study was to evaluate the potential of Javanese turmeric ethanol extract in the inhibition of the formation ofStreptococcus sanguinis and Porphyromonas gingivalis biofilms, individually and in combination.Methods: The concentration of P. gingivalis and S. sanguinis bacteria ranged from 0.5% to 25%. Inhibition assay for biofilm formation was conductedon a 96-well plate using brain heart infusion (BHI) agar enriched with 0.2% sucrose at 37oC for 18 h. After staining with 0.5% crystal violet, the opticaldensity was measured at 490 nm.Results: Javanese turmeric can potentially inhibit the biofilm formation of S. sanguinis (IC50 0.5%, IC90 15%) and P. gingivalis (IC50 15%) on single anddual species (IC50 0.5%, IC90 15%).Conclusion: Javanese turmeric has the potential to inhibit the formation of S. sanguinis and P. gingivalis biofilms.


Sign in / Sign up

Export Citation Format

Share Document