scholarly journals POTENTIAL OF JAVANESE TURMERIC ETHANOL EXTRACT IN INHIBITING STREPTOCOCCUS SANGUINIS AND PORPHYROMONAS GINGIVALIS BIOFILM FORMATION

Author(s):  
REINA HUTAURUK ◽  
DEWI FATMA SUNIARTI ◽  
WIDURINI DJOHAN

Objective: The purpose of the current study was to evaluate the potential of Javanese turmeric ethanol extract in the inhibition of the formation ofStreptococcus sanguinis and Porphyromonas gingivalis biofilms, individually and in combination.Methods: The concentration of P. gingivalis and S. sanguinis bacteria ranged from 0.5% to 25%. Inhibition assay for biofilm formation was conductedon a 96-well plate using brain heart infusion (BHI) agar enriched with 0.2% sucrose at 37oC for 18 h. After staining with 0.5% crystal violet, the opticaldensity was measured at 490 nm.Results: Javanese turmeric can potentially inhibit the biofilm formation of S. sanguinis (IC50 0.5%, IC90 15%) and P. gingivalis (IC50 15%) on single anddual species (IC50 0.5%, IC90 15%).Conclusion: Javanese turmeric has the potential to inhibit the formation of S. sanguinis and P. gingivalis biofilms.

Author(s):  
REZON YANUAR ◽  
DEWI FATMA SUNIARTI ◽  
WIDURINI DJOHAN

Objective: Javanese turmeric is an Indonesian native medicinal plant with antibacterial activities. This study aimed to analyze the efficacy of identifiedJavanese turmeric ethanol extract (IJTEE) in eradicating Streptococcus sanguinis and Porphyromonas gingivalis biofilms.Methods: Biofilm assay: Single and combination biofilms formed at different phases were exposed to IJTEE in 0.5–25% concentrations for 1 h. Thepercentage of eradication was tested using the microtetrazolium assay.Results: The efficacy of IJTEE in eradicating the biofilm was equal to that of chlorhexidine against the early phase of biofilm formation. IJTEE is moreeffective against S. sanguinis biofilm formation than against P. gingivalis biofilm formation.Conclusion: IJTEE can eradicate S. sanguinis and P. gingivalis biofilms.


Author(s):  
LIZA NOAH FEBRIANA MARPAUNG ◽  
DEWI FATMA SUNIARTI ◽  
AGOENG TJAHAJANI SARWONO

Objective: To study the effectiveness of identified Javanese turmeric ethanol extract (IJTEE) against single and combined biofilm formation byStreptococcus mutans and Porphyromonas gingivalis.Methods: S. mutans ATCC 25175 and P. gingivalis ATCC 33277 were tested for the minimum inhibitory concentration (MIC) and minimum bactericidalconcentration (MBC) of IJTEE using microdilution technique. The inhibition of biofilm formation by IJTEE was analyzed using crystal violet assay.Results: MIC and MBC of IJTEE for S. mutans were 5% and 15%, respectively. MIC of IJTEE for the biofilm of S. mutans was 1% and for that ofP. gingivalis was 15%; the MIC of IJTEE for the combined biofilm was 0.5%.Conclusion: IJTEE was effective in inhibiting single and combined biofilm formation by S. mutans and P. gingivalis.


Author(s):  
Deedarul Hyder Sani ◽  
Ali Newaz Munna ◽  
Mohammad Salim ◽  
Md. Jahangir Alam ◽  
Md. Jahangir Alam

Background: Diabetes mellitus is the most occurring non-communicable disease resulting in a high blood glucose level. There has been an immense interest in the development of alternative medicines for diabetes treatment, specifically screening functional foods for phytochemicals with the capability of delaying or preventing glucose absorption through digestive enzymes (e.g. α-amylase) inhibition. So, the development of α-amylase inhibitors derived from natural food products is an alternative way to prevent diabetes mellitus Objective: In this study, organic solvent extracts of the Arachis hypogaea (Peanut) and Cinnamomum tamala (Indian bay leaf /Tejpata) were used to investigate their potential α-amylase inhibition and cytotoxic activities through α-amylase inhibition assay and brine shrimp lethality bioassay respectively Method: The α-amylase inhibition assay was performed using the 3,5-dinitrosalicylic acid method for different concentrations of plant extracts. The optical density (OD) of the solutions were measured to determine the inhibition activity at 540 nm using a spectrophotometer. The cytotoxicity of the plant extracts was measured using brine shrimp (Artemia salina) lethality bioassay Results: Among the different organic solvent extracts, peanut seed ethanol extract showed the highest α-amylase inhibition activity (67.68±8.67%) at 1.25 μg/mL concentration with an IC50 value of 0.61 μg/mL which is very close to standard α-amylase inhibitor Acarbose (72.34±4.23%) with an IC50 value of 0.32 μg/mL while acetone extract of Indian bay leaf exhibited the lowest inhibition activity (47.75±1.63%) with an IC50 value of 1.42 μg/mL at the same concentration. Besides, the maximum cytotoxic activity was found in acetone extract of peanut shell with an LC50 value of 57.87 μg/mL whereas ethanol extract of peanut seed showed the lowest cytotoxicity with an LC50 value of 413.90 μg/mL Conclusion: The result of the present work clearly indicates the potentiality of peanut seed ethanol extract to be used in the management of hyperglycemia as it significantly inhibits α-amylase activity while showing less cytotoxic activities


2011 ◽  
Vol 80 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Chen Li ◽  
Kurniyati ◽  
Bo Hu ◽  
Jiang Bian ◽  
Jianlan Sun ◽  
...  

ABSTRACTThe oral bacteriumPorphyromonas gingivalisis a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide.P. gingivalisexhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence ofP. gingivalisremain elusive. In this report, we found thatP. gingivalisencodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed thatPG0352is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPgis an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that thePG0352deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type,in vitrostudies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement.In vivostudies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPgis an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity ofP. gingivalis, and it can potentially serve as a new target for developing therapeutic agents againstP. gingivalisinfection.


2010 ◽  
Vol 7 (4) ◽  
pp. 441-445 ◽  
Author(s):  
M. Palaniswamy ◽  
B. V. Pradeep ◽  
R. Sathya ◽  
J. Angayarkanni

Developing countries, where malaria is one of the most prevalent diseases, still rely on traditional medicine as a source for the treatment of this disease. For the present study,Trigonella foenum-graecumL. (fenugreek) were collected from Coimbatore, Tamilnadu, India. The test plant has been used in India by traditional healers for the treatment of fever as well as other diseases. The active principle was extracted out in different solvent systems to assess the anti-plasmodial potential, with an aim that they can further be utilized to formulate drugs.In vitroanti-plasmodial assay of the extracted fractions of fenugreek leaves was carried out using laboratory adapted chloroquine sensitive and resistantPlasmodium falciparumisolates. Schizont maturation inhibition assay was adopted to analyze the potential of the extracts. Ethanol extract (50%) seemed to possess profound anti-plasmodial activity with IC50value of 8.75 ± 0.35 µg ml−1and 10.25 ± 0.35 µg ml−1against chloroquine sensitive and resistantP. falciparumisolates, respectively. Among the investigated six fractions of the plant extracts, two were found to have significant anti-plasmodial activity with IC50values <10 µg ml−1, namely ethanol and butanol extracts. Two extracts chloroform and ethyl acetate showed moderate activity with IC50values ranging from 10 to 20 µg ml−1, and the other two extracts, hexane and water appeared to be inactive with IC50values >85 µg ml−1. In addition, preliminary phytochemical screening of the various extracts indicated the presence of alkaloids, saponin, tannin like phenolic compounds, flavonoids and steroids.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heema K. N. Vyas ◽  
Jason D. McArthur ◽  
Martina L. Sanderson-Smith

AbstractGroup A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Biofilm formation has been implicated in both pharyngeal and dermal GAS infections. In vitro, plate-based assays have shown that several GAS M-types form biofilms, and multiple GAS virulence factors have been linked to biofilm formation. Although the contributions of these plate-based studies have been valuable, most have failed to mimic the host environment, with many studies utilising abiotic surfaces. GAS is a human specific pathogen, and colonisation and subsequent biofilm formation is likely facilitated by distinct interactions with host tissue surfaces. As such, a host cell-GAS model has been optimised to support and grow GAS biofilms of a variety of GAS M-types. Improvements and adjustments to the crystal violet biofilm biomass assay have also been tailored to reproducibly detect delicate GAS biofilms. We propose 72 h as an optimal growth period for yielding detectable biofilm biomass. GAS biofilms formed are robust and durable, and can be reproducibly assessed via staining/washing intensive assays such as crystal violet with the aid of methanol fixation prior to staining. Lastly, SEM imaging of GAS biofilms formed by this model revealed GAS cocci chains arranged into three-dimensional aggregated structures with EPS matrix material. Taken together, we outline an efficacious GAS biofilm pharyngeal cell model that can support long-term GAS biofilm formation, with biofilms formed closely resembling those seen in vivo.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 519
Author(s):  
Kasidid Ruksakiet ◽  
Balázs Stercz ◽  
Gergő Tóth ◽  
Pongsiri Jaikumpun ◽  
Ilona Gróf ◽  
...  

The formation of Pseudomonas aeruginosa biofilms in cystic fibrosis (CF) is one of the most common causes of morbidity and mortality in CF patients. Cyclic di-GMP and cyclic AMP are second messengers regulating the bacterial lifestyle transition in response to environmental signals. We aimed to investigate the effects of extracellular pH and bicarbonate on intracellular c-di-GMP and cAMP levels, and on biofilm formation. P. aeruginosa was inoculated in a brain–heart infusion medium supplemented with 25 and 50 mM NaCl in ambient air (pH adjusted to 7.4 and 7.7 respectively), or with 25 and 50 mM NaHCO3 in 5% CO2 (pH 7.4 and 7.7). After 16 h incubation, c-di-GMP and cAMP were extracted and their concentrations determined. Biofilm formation was investigated using an xCelligence real-time cell analyzer and by crystal violet assay. Our results show that HCO3− exposure decreased c-di-GMP and increased cAMP levels in a dose-dependent manner. Biofilm formation was also reduced after 48 h exposure to HCO3−. The reciprocal changes in second messenger concentrations were not influenced by changes in medium pH or osmolality. These findings indicate that HCO3− per se modulates the levels of c-di-GMP and cAMP, thereby inhibiting biofilm formation and promoting the planktonic lifestyle of the bacteria.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yosi Farkash ◽  
Mark Feldman ◽  
Isaac Ginsburg ◽  
Doron Steinberg ◽  
Miriam Shalish

Candida albicans (C. albicans) is the most prevalent opportunistic human pathogenic fungus and can cause mucosal membrane infections and invade the blood. In the oral cavity, it can ferment dietary sugars, produce organic acids and therefore has a role in caries development. In this study, we examined whether the polyphenol rich extractions Polyphenon from green tea (PPFGT) and Padma Hepaten (PH) can inhibit the caries-inducing properties of C. albicans. Biofilms of C. albicans were grown in the presence of PPFGT and PH. Formation of biofilms was tested spectrophotometrically after crystal violet staining. Exopolysaccharides (EPS) secretion was quantified using confocal scanning laser microscopy (CSLM). Treated C. albicans morphology was demonstrated using scanning electron microscopy (SEM). Expression of virulence-related genes was tested using qRT-PCR. Development of biofilm was also tested on an orthodontic surface (Essix) to assess biofilm inhibition ability on such appliances. Both PPFGT and PH dose-dependently inhibited biofilm formation, with no inhibition on planktonic growth. The strongest inhibition was obtained using the combination of the substances. Crystal violet staining showed a significant reduction of 45% in biofilm formation using a concentration of 2.5mg/ml PPFGT and 0.16mg/ml PH. A concentration of 1.25 mg/ml PPFGT and 0.16 mg/ml PH inhibited candidal growth by 88% and EPS secretion by 74% according to CSLM. A reduction in biofilm formation and in the transition from yeast to hyphal morphotype was observed using SEM. A strong reduction was found in the expression of hwp1, eap1, and als3 virulence associated genes. These results demonstrate the inhibitory effect of natural PPFGT polyphenolic extraction on C. albicans biofilm formation and EPS secretion, alone and together with PH. In an era of increased drug resistance, the use of phytomedicine to constrain biofilm development, without killing host cells, may pave the way to a novel therapeutic concept, especially in children as orthodontic patients.


2021 ◽  
Vol 22 (21) ◽  
pp. 12084
Author(s):  
Michał Śmiga ◽  
John W. Smalley ◽  
Paulina Ślęzak ◽  
Jason L. Brown ◽  
Klaudia Siemińska ◽  
...  

The non-enzymatic addition of glucose (glycation) to circulatory and tissue proteins is a ubiquitous pathophysiological consequence of hyperglycemia in diabetes. Given the high incidence of periodontitis and diabetes and the emerging link between these conditions, it is of crucial importance to define the basic virulence mechanisms employed by periodontopathogens such as Porphyromonas gingivalis in mediating the disease process. The aim of this study was to determine whether glycated proteins are more easily utilized by P. gingivalis to stimulate growth and promote the pathogenic potential of this bacterium. We analyzed the properties of three commonly encountered proteins in the periodontal environment that are known to become glycated and that may serve as either protein substrates or easily accessible heme sources. In vitro glycated proteins were characterized using colorimetric assays, mass spectrometry, far- and near-UV circular dichroism and UV–visible spectroscopic analyses and SDS-PAGE. The interaction of glycated hemoglobin, serum albumin and type one collagen with P. gingivalis cells or HmuY protein was examined using spectroscopic methods, SDS-PAGE and co-culturing P. gingivalis with human keratinocytes. We found that glycation increases the ability of P. gingivalis to acquire heme from hemoglobin, mostly due to heme sequestration by the HmuY hemophore-like protein. We also found an increase in biofilm formation on glycated collagen-coated abiotic surfaces. We conclude that glycation might promote the virulence of P. gingivalis by making heme more available from hemoglobin and facilitating bacterial biofilm formation, thus increasing P. gingivalis pathogenic potential in vivo.


Sign in / Sign up

Export Citation Format

Share Document