scholarly journals In vivo and ex vivo cetuximab sensitivity assay using three-dimensional primary culture system to stratify KRAS mutant colorectal cancer

PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0174151 ◽  
Author(s):  
Takahiro Tashiro ◽  
Hiroaki Okuyama ◽  
Hiroko Endo ◽  
Kenji Kawada ◽  
Yasuko Ashida ◽  
...  
Author(s):  
Donghyun Kim ◽  
Yeo-Jun Yoon ◽  
Dojin Choi ◽  
Jisun Kim ◽  
Jae-Yol Lim

Lumen formation of salivary glands has been investigated using in vivo or ex vivo rudiment culture models. In this study, we used a three-dimensional (3D) salivary gland organoid culture system and demonstrated that lumen formation could be recapitulated in mouse SMG organoids. In our organoid culture system, lumen formation was induced by vasoactive intestinal peptide and accelerated by treatment with RA. Furthermore, lumen formation was observed in branching duct-like structure when cultured in combination of fibroblast growth factors (FGF) in the presence of retinoic acid (RA). We suggest RA signaling-mediated regulation of VIPR1 and KRT7 as the underlying mechanism for lumen formation, rather than apoptosis in the organoid culture system. Collectively, our results support a fundamental role for RA in lumen formation and demonstrate the feasibility of 3D organoid culture as a tool for studying salivary gland morphogenesis.


2020 ◽  
Vol 13 (02) ◽  
pp. 2050007
Author(s):  
Joanne Li ◽  
Madison N. Wilson ◽  
Andrew J. Bower ◽  
Marina Marjanovic ◽  
Eric J. Chaney ◽  
...  

To date, numerous studies have been performed to elucidate the complex cellular dynamics in skin diseases, but few have attempted to characterize these cellular events under conditions similar to the native environment. To address this challenge, a three-dimensional (3D) multimodal analysis platform was developed for characterizing in vivo cellular dynamics in skin, which was then utilized to process in vivo wound healing data to demonstrate its applicability. Special attention is focused on in vivo biological parameters that are difficult to study with ex vivo analysis, including 3D cell tracking and techniques to connect biological information obtained from different imaging modalities. These results here open new possibilities for evaluating 3D cellular dynamics in vivo, and can potentially provide new tools for characterizing the skin microenvironment and pathologies in the future.


2019 ◽  
Vol 1 (1-2) ◽  
Author(s):  
Elisabeth J.M. Baltussen ◽  
Susan G. Brouwer De Koning ◽  
Benno H.W. Hendriks ◽  
Katarzyna Jóźwiak ◽  
Henricus J.C.M. Sterenborg ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4147-4147
Author(s):  
Sonja Loges ◽  
Martin Butzal ◽  
Uta Fischer ◽  
Ursula M. Gehling ◽  
Dieter K. Hossfeld ◽  
...  

Abstract The rare CD133+ stem cell population contains both hematopoietic and endothelial progenitors. Successful ex-vivo expansion of this multipotent population would therefore be of great benefit in many clinical settings including stem cell transplantation and gene therapy. We developed a cell culture system containing the recombinant human cytokines vascular endothelial growth factor (VEGF), FLT3 ligand (FLT3L) and stem cell growth factor (SCGF) for ex-vivo expansion of purified human CD133+ stem cells obtained from leukapheresis products from patients pre-treated with G-CSF. FACS analysis, colony assays and NOD-SCID transplantation studies were performed to monitor stem cell and endothelial phenotype in-vitro and in-vivo. Cultivation with VEGF, FLT3L and SCGF induced a mean 2200-fold increase of total cell counts in 5 weeks. FACS analysis revealed persistence of 6–15% CD133+ stem cells indicating proliferation and survival of primitive hematopoietic stem cells. 5–6% of the proliferating cells expressed the endothelial markers CD144 (VE-Cadherin) and von-Willebrand factor (vWF). Ex-vivo expanded stem cells could be differentiated into adherent endothelial cells after withdrawal of SCGF and FLT3L allowing generation of large numbers of endothelial cells. Colony-assays showed an increase of hematopoietic and endothelial colonies after 5 weeks of ex-vivo expansion indicating simultaneous proliferation of hematopoietic and endothelial precursors under the established culture conditions (CFU-E 60-fold, CFU-GEMM 48-fold, CFU-GM 59-fold, CFU-G 99-fold, CFU-M 1356-fold and CFU-EC 1843-fold). To assess in-vivo functionality, hematopoietic stem cells expanded ex-vivo for 7, 14, 21 and 32 days were transplanted into sublethally irradiated NOD-SCID mice. For each expansion period, the mean percentage of anti-human CD45 positive bone marrow cells 3 months post-transplantation was 11, 3, 3 and 1%, respectively. Human CD45+ cells for each set of experiments contained a mean of 15, 26, 8 and 32% T-cells (CD3+), 9, 0, 7 and 21% B-cells (CD19+), 24, 2, 2 and 11% monocytes (CD14+), 21, 3, 1 and 12% granulocytes (CD33+) and 19, 37, 44 and 24% stem cells (CD34+) (d7 (n=5), d14 (n=4), d21 (n=7) and d32 (n=6) respectively). Our experiments showed multilineage engraftment of human stem cells expanded for more than 4 weeks ex-vivo. Therefore our culture system provides a tool to generate large numbers of human stem and endothelial cells for clinical purposes.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e19015-e19015
Author(s):  
Amr M. Morsi ◽  
Avital Gazial-Sovran ◽  
Hana Baig ◽  
Robert S. Kerbel ◽  
John Golfinos ◽  
...  

e19015 Background: 75% of patients with metastatic melanoma develop brain metastases (B-mets). Such patients show dismal prognosis with a median survival of < 6 months. Scarcity of clinically relevant in vivo models has hindered melanoma B-met studies. We compared the in vivo dissemination upon ultrasound (u/s) guided intracardiac injection of B16F10 cells to 131/4-5B1 (hereafter 5B1), a WM239A subclone with enhanced brain tropism. We also implemented an ex vivo MRI protocol as a high throughput three dimensional approach for characterizing B-mets penetrance and growth. Methods: B16-F10 or 5B1 melanoma cells were injected in C57BL/6J mice (n=40) or athymic/nude mice (n=40) respectively using u/s-guided intracardiac injection. Upon weight loss, mice were euthanized, and heads prepared for ex vivo imaging. All µMRI experiments were performed with a 7T Bruker Avance II console. The protocol consisted of (110-mm)3 isotropic T1-, T2- and T2*-weighted sequences. Results: Our ex vivo MRI recapitulates the clinical radiological T1 and T2 brightening as well as susceptibility-induced T2* darkening effect of melanoma. The B16F10 model revealed exclusive ventricular and leptomeningeal spread while the 5B1 model showed parenchymal lesions. In addition, 90% of the 5B1 mice with brain tumors showed multiple lesions (3-16) vs. 18% in the B16F10 model (1- 3). Finally, 3D volume studies revealed a higher B-met penetrance (68% vs. 18%), delayed onset of tumor detection (earliest-day 27 vs. day 15) post-injection and a slower growth rate of 5B1 brain metastases compared to B16F10 tumors. Conclusions: Our results suggest that u/s-guided intracardiac injection of melanoma cells is an optimal method to capture the cells’ spontaneous dissemination pattern (or site-specific tropism) and that the 5B1 model is a more clinically relevant model of melanoma B-met for preclinical studies.


2001 ◽  
Vol 8 (2) ◽  
pp. 150-157 ◽  
Author(s):  
Thomas F. Wood ◽  
Sukamal Saha ◽  
Donald L. Morton ◽  
George J. Tsioulias ◽  
Decio Rangel ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Russell Foxall ◽  
Priyanka Narang ◽  
Bridget Glaysher ◽  
Elin Hub ◽  
Emma Teal ◽  
...  

Diffuse large cell B cell lymphoma (DLBCL) accounts for approximately 30%–40% of all non-Hodgkin lymphoma (NHL) cases. Current first line DLBCL treatment results in long-term remission in more than 60% of cases. However, those patients with primary refractory disease or early relapse exhibit poor prognosis, highlighting a requirement for alternative therapies. Our aim was to develop a novel model of DLBCL that facilitates in vitro testing of current and novel therapies by replicating key components of the tumor microenvironment (TME) in a three-dimensional (3D) culture system that would enable primary DLBCL cell survival and study ex vivo. The TME is a complex ecosystem, comprising malignant and non-malignant cells, including cancer-associated fibroblasts (CAF) and tumor-associated macrophages (TAM) whose reciprocal crosstalk drives tumor initiation and growth while fostering an immunosuppressive milieu enabling its persistence. The requirement to recapitulate, at least to some degree, this complex, interactive network is exemplified by the rapid cell death of primary DLBCL cells removed from their TME and cultured alone in vitro. Building on previously described methodologies to generate lymphoid-like fibroblasts from adipocyte derived stem cells (ADSC), we confirmed lymphocytes, specifically B cells, interacted with this ADSC-derived stroma, in the presence or absence of monocyte-derived macrophages (MDM), in both two-dimensional (2D) cultures and a 3D collagen-based spheroid system. Furthermore, we demonstrated that DLBCL cells cultured in this system interact with its constituent components, resulting in their improved viability as compared to ex-vivo 2D monocultures. We then assessed the utility of this system as a platform to study therapeutics in the context of antibody-directed phagocytosis, using rituximab as a model immunotherapeutic antibody. Overall, we describe a novel 3D spheroid co-culture system comprising key components of the DLBCL TME with the potential to serve as a testbed for novel therapeutics, targeting key cellular constituents of the TME, such as CAF and/or TAM.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1997 ◽  
Author(s):  
Stefano Palazzolo ◽  
Mohamad Hadla ◽  
Concetta Russo Spena ◽  
Isabella Caligiuri ◽  
Rossella Rotondo ◽  
...  

DNA origami systems could be important candidates for clinical applications. Unfortunately, their intrinsic properties such as the activation of non-specific immune system responses leading to inflammation, instability in physiological solutions, and a short in vivo lifetime are the major challenges for real world applications. A compact short tube DNA origami (STDO) of 30 nm in length and 10 nm in width was designed to fit inside the core of a stealth liposome (LSTDO) of about 150 nm to remote load doxorubicin. Biocompatibility was tested in three-dimensional (3D) organoid cultures and in vivo. Efficacy was evaluated in different cell lines and in a xenograft breast cancer mouse model. As described in a previous work, LSTDO is highly stable and biocompatible, escaping the recognition of the immune system. Here we show that LSTDO have an increased toleration in mouse liver organoids used as an ex vivo model that recapitulate the tissue of origin. This innovative drug delivery system (DDS) improves the antitumoral efficacy and biodistribution of doxorubicin in tumor-bearing mice and decreases bone marrow toxicity. Our application is an attractive system for the remote loading of other drugs able to interact with DNA for the preparation of liposomal formulations.


Sign in / Sign up

Export Citation Format

Share Document