scholarly journals Mxi1-0 regulates the growth of human umbilical vein endothelial cells through extracellular signal-regulated kinase 1/2 (ERK1/2) and interleukin-8 (IL-8)-dependent pathways

PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0178831 ◽  
Author(s):  
Weiling Wu ◽  
Zhenzhen Hu ◽  
Feng Wang ◽  
Hao Gu ◽  
Xiuqin Jiang ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Shan Jiang ◽  
Dongxin Zhang ◽  
Hong Huang ◽  
Yonghong Lei ◽  
Yan Han ◽  
...  

Background. The aim of this study was to assess the effects of low concentrations of H2O2 on angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro and explore the underlying mechanisms. Methods. HUVECs were cultured and stimulated with different concentrations of H2O2. Flow cytometric analysis was used to select an optimal concentration of H2O2 for the following experiments. Cell proliferation, migration, and tubule formation were evaluated by Cell Counting Kit-8 (CCK-8) assays, scratch wound assays, and Matrigel tubule formation assays, respectively. For gain and loss of function studies, constitutively active MEK5 (CA-MEK5) and ERK5 shRNA lentiviruses were used to activate or knock down extracellular signal-regulated kinase 5 (ERK5). Results. We found that low concentrations of H2O2 promoted HUVECs proliferation, migration, and tubule formation. ERK5 in HUVECs was significantly activated by H2O2. Enhanced ERK5 activity significantly amplified the proangiogenic effects of H2O2; in contrast, ERK5 knock-down abrogated the effects of H2O2. Conclusions. Our results confirmed that low concentrations of H2O2 promoted HUVECs angiogenesis in vitro, and ERK5 is an essential mediator of this process. Therefore, ERK5 may be a potential therapeutic target for promoting angiogenesis and improving graft survival.


2004 ◽  
Vol 82 (5) ◽  
pp. 583-588 ◽  
Author(s):  
Naokatu Arakaki ◽  
Ayako Toyofuku ◽  
Yuka Emoto ◽  
Tomoko Nagao ◽  
Yoshinori Kuramoto ◽  
...  

Dietary flavonoids have demonstrated anti-carcinogenic activity in several animal models, but their mechanisms of action have not yet been clearly established. Here, we show that flavone, a parent compound of flavonoids, inhibits the proliferation, migration, and capillary tube formation of human umbilical vein endothelial cells (HUVECs). Flow cytometric analysis showed that flavone arrests the cell cycle progression at G1 phase in HUVECs. We observed the down-regulation of the hyperphosphorylated form of retinoblastoma gene product and cyclin-dependent kinases 2 and 4 in flavone-treated cells, but it had no affect on the expression of p53 and cyclin-dependent kinase inhibitors p21CIP/Waf1 and p27Kip. Flavone almost completely inhibited the activation of extracellular signal regulated kinase 1. The present results suggest that the flavone moiety of flavonoids is required for anti-proliferative activity of flavonoids and that anti-carcinogenic action of flavonoids in vivo was mediated, at least in part, by inhibiting angiogenesis.Key words: flavone, angiogenesis, human umbilical vein endothelial cells (HUVECs), cell cycle, retinoblastoma gene product (Rb), ERK.


2009 ◽  
Vol 110 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Tzu-Hurng Cheng ◽  
Jin-Jer Chen ◽  
Cheng-Hsien Chen ◽  
Kar-Lok Wong

Background Propofol is one of the most popular intravenous induction agents of general anesthesia. Experimental results revealed that propofol exerted hypotensive and antioxidative effects. However, the intracellular mechanism of propofol remains to be delineated. The aims of this study were to test the hypothesis that propofol may alter strain-induced endothelin-1 (ET-1) secretion and nitric oxide production, and to identify the putative underlying signaling pathways in human umbilical vein endothelial cells. Methods Cultured human umbilical vein endothelial cells were exposed to cyclic strain in the presence of propofol, and ET-1 expression was examined by Northern blotting and enzyme-linked immunosorbent assay kit. Activation of extracellular signal-regulated protein kinase, endothelial nitric oxide synthase, and protein kinase B were assessed by Western blot analysis. Results The authors show that propofol inhibits strain-induced ET-1 expression, strain-increased reactive oxygen species formation, and extracellular signal-regulated protein kinase phosphorylation. On the contrary, nitric oxide production, endothelial nitric oxide synthase activity, and protein kinase B phosphorylation were enhanced by propofol treatment. Furthermore, in the presence of PTIO, a nitric oxide scavenger, and KT5823, a specific inhibitor of cyclic guanosine monophosphate-dependent protein kinase, the inhibitory effect of propofol on strain-induced extracellular signal-regulated protein kinase phosphorylation and ET-1 release was reversed. Conclusions The authors demonstrate for the first time that propofol inhibits strain-induced ET-1 secretion and enhances strain-increased nitric oxide production in human umbilical vein endothelial cells. Thus, this study delivers important new insight into the molecular pathways that may contribute to the proposed hypotensive effects of propofol in the cardiovascular system.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Chaur-Jong Hu ◽  
Yueh-Lun Lee ◽  
Neng-Yao Shih ◽  
Yi-Yuan Yang ◽  
Suparat Charoenfuprasert ◽  
...  

Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1) is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8), a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF-α-stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells (HUVECs). Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-αstimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-αinduced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document