scholarly journals Influence of a diet enriched with virgin olive oil or butter on mouse gut microbiota and its correlation to physiological and biochemical parameters related to metabolic syndrome

PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0190368 ◽  
Author(s):  
Isabel Prieto ◽  
Marina Hidalgo ◽  
Ana Belén Segarra ◽  
Ana María Martínez-Rodríguez ◽  
Antonio Cobo ◽  
...  
Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 3005 ◽  
Author(s):  
Zhihao Zhao ◽  
Aimin Shi ◽  
Qiang Wang ◽  
Jinrong Zhou

Unhealthy dietary patterns are important risk factors for metabolic syndrome (MS), which is associated with gut microbiota disorder. High oleic acid peanut oil (HOPO) and extra virgin olive oil (EVOO), considered as healthy dietary oil, are rich in oleic acid and bioactive phytochemicals, yet efficacy of MS prevention and mechanisms linking to gut microbiota remain obscure. Herein, we investigated HOPO and EVOO supplementation in attenuating diet-induced MS, and the potential mechanisms focusing on modulation of gut microbiota. Physiological, histological and biochemical parameters and gut microbiota profiles were compared among four groups fed respectively with the following diets for 12 weeks: normal chow diet with ordinary drinking water, high-fat diet with fructose drinking water, HOPO diet with fructose drinking water, and EVOO diet with fructose drinking water. HOPO or EVOO supplementation exhibit significant lower body weight gain, homeostasis model assessment-insulin resistance (HOMA-IR), and reduced liver steatosis. HOPO significantly reduced cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL) level, while EVOO reduced these levels without significant difference. HOPO and EVOO prevented gut disorder and significantly increased β-diversity and abundance of Bifidobacterium. Moreover, HOPO significantly decreased abundance of Lachnospiraceae and Blautia. These findings suggest that both HOPO and EVOO can attenuate diet-induced MS, associated with modulating gut microbiota.


Nature ◽  
2016 ◽  
Vol 536 (7615) ◽  
pp. 238-238 ◽  
Author(s):  
Benoit Chassaing ◽  
Omry Koren ◽  
Julia K. Goodrich ◽  
Angela C. Poole ◽  
Shanthi Srinivasan ◽  
...  

2015 ◽  
Vol 56 (1) ◽  
pp. 119-131 ◽  
Author(s):  
Sandra Martín-Peláez ◽  
Juana Ines Mosele ◽  
Neus Pizarro ◽  
Marta Farràs ◽  
Rafael de la Torre ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2200
Author(s):  
Marta Farràs ◽  
Laura Martinez-Gili ◽  
Kevin Portune ◽  
Sara Arranz ◽  
Gary Frost ◽  
...  

There is extensive information of the beneficial effects of virgin olive oil (VOO), especially on cardiovascular diseases. Some VOO healthy properties have been attributed to their phenolic-compounds (PCs). The aim of this review is to present updated data on the effects of olive oil (OO) PCs on the gut microbiota, lipid metabolism, immune system, and obesity, as well as on the crosstalk among them. We summarize experiments and clinical trials which assessed the specific effects of the olive oil phenolic-compounds (OOPCs) without the synergy with OO-fats. Several studies have demonstrated that OOPC consumption increases Bacteroidetes and/or reduces the Firmicutes/Bacteroidetes ratio, which have both been related to atheroprotection. OOPCs also increase certain beneficial bacteria and gut-bacteria diversity which can be therapeutic for lipid-immune disorders and obesity. Furthermore, some of the mechanisms implicated in the crosstalk between OOPCs and these disorders include antimicrobial-activity, cholesterol microbial metabolism, and metabolites produced by bacteria. Specifically, OOPCs modulate short-chain fatty-acids produced by gut-microbiota, which can affect cholesterol metabolism and the immune system, and may play a role in weight gain through promoting satiety. Since data in humans are scarce, there is a necessity for more clinical trials designed to assess the specific role of the OOPCs in this crosstalk.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1705
Author(s):  
Carmen Rodríguez-García ◽  
Cristina Sánchez-Quesada ◽  
Ignacio Algarra ◽  
José J. Gaforio

The present study aims to examine the effects of three different high-fat diet (HFD) on mice gut microbiota in order to analyse whether they create the microenvironmental conditions that either promote or prevent colorectal cancer (CRC). We evaluated colonic mucosa-associated microbiota in CD1 mice fed with HFD, based on 60% kcal from fat-containing coconut, sunflower or extra-virgin olive oil as the only source of fat. The main findings were as follows: (a) All HFD produced a decrease in the richness and diversity of the intestinal microbiota that was independent of mouse weight, (b) HFD switched Lactobacillus to Lactococcus. In general, the results showed that both sunflower- and coconut-HFD generated a pro-inflammatory intestinal microenvironment. In brief, coconut-HFD decreased Akkermansia and increased Staphylococcus, Prevotella and Bacteroides spp. abundance. Sunflower-HFD reduced Akkermansia and Bifidobacterium, while enhancing Sphingomonas and Neisseria spp. abundance. In contrast, EVOO-HFD produced an anti-inflammatory microenvironment characterised by a decreased Enterococcus, Staphylococcus, Neisseria and Pseudomonas spp. abundance. At the same time, it increased the Firmicutes/Bacteroidetes ratio and maintained the Akkermansia population. To conclude, EVOO-HFD produced changes in the gut microbiota that are associated with the prevention of CRC, while coconut and sunflower-HFD caused changes associated with an increased risk of CRC.


Nature ◽  
2015 ◽  
Vol 519 (7541) ◽  
pp. 92-96 ◽  
Author(s):  
Benoit Chassaing ◽  
Omry Koren ◽  
Julia K. Goodrich ◽  
Angela C. Poole ◽  
Shanthi Srinivasan ◽  
...  

2019 ◽  
Vol 59 (6) ◽  
pp. 2411-2425 ◽  
Author(s):  
Jasmine Millman ◽  
Shiki Okamoto ◽  
Aoki Kimura ◽  
Tsugumi Uema ◽  
Moeko Higa ◽  
...  

Abstract Purpose Extra virgin olive oil (EVOO) and flaxseed oil (FO) contain a variety of constituents beneficial for chronic inflammation and cardio-metabolic derangement. However, little is known about the impact of EVOO and FO on dysbiosis of gut microbiota, intestinal immunity, and barrier. We, therefore, aimed to assess the impact of EVOO and FO on gut microbiota, mucosal immunity, barrier integrity, and metabolic health in mice. Methods C57BL/6 J mice were exposed to a low-fat (LF), lard (HF), high fat-extra virgin olive oil (HF-EVOO), or high fat-flaxseed oil (HF-FO) diet for 10 weeks. Gut microbiota assessment was undertaken using 16S rRNA sequencing. Levels of mRNA for genes involved in intestinal inflammation and barrier maintenance in the intestine and bacterial infiltration in the liver were measured by qPCR. Results HF-EVOO or HF-FO mice showed greater diversity in gut microbiota as well as a lower abundance of the Firmicutes phylum in comparison with HF mice (P < 0.05). The qPCR analyses revealed that mRNA level of FoxP3, a transcription factor, and IL-10, an inducer of regulatory T cells, was significantly elevated in the intestines of mice-fed HF-EVOO in comparison with mice-fed HF (P < 0.05). The mRNA level of the antimicrobial peptide, RegӀӀӀγ, was markedly elevated in the intestines of HF-EVOO and HF-FO compared with HF group (P < 0.05). Conclusions Our data suggest that the consumption of EVOO or FO can beneficially impact gut microbiota, enhance gut immunity, and assist in the preservation of metabolic health in mice.


Sign in / Sign up

Export Citation Format

Share Document