scholarly journals Tissue-specific impact of FADS cluster variants on FADS1 and FADS2 gene expression

PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0194610 ◽  
Author(s):  
Lindsay M. Reynolds ◽  
Timothy D. Howard ◽  
Ingo Ruczinski ◽  
Kanika Kanchan ◽  
Michael C. Seeds ◽  
...  
2021 ◽  
Author(s):  
Hao Lu ◽  
Luyu Ma ◽  
Lei Li ◽  
Cheng Quan ◽  
Yiming Lu ◽  
...  

Noncoding genomic variants constitute the majority of trait-associated genome variations; however, identification of functional noncoding variants is still a challenge in human genetics, and a method systematically assessing the impact of regulatory variants on gene expression and linking them to potential target genes is still lacking. Here we introduce a deep neural network (DNN)-based computational framework, RegVar, that can accurately predict the tissue-specific impact of noncoding regulatory variants on target genes. We show that, by robustly learning the genomic characteristics of massive variant-gene expression associations in a variety of human tissues, RegVar vastly surpasses all current noncoding variants prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a webserver at http://regvar.cbportal.org/.


2000 ◽  
Vol 20 (9) ◽  
pp. 3316-3329 ◽  
Author(s):  
Carsten Müller ◽  
Carol Readhead ◽  
Sven Diederichs ◽  
Gregory Idos ◽  
Rong Yang ◽  
...  

ABSTRACT Gene expression in mammalian organisms is regulated at multiple levels, including DNA accessibility for transcription factors and chromatin structure. Methylation of CpG dinucleotides is thought to be involved in imprinting and in the pathogenesis of cancer. However, the relevance of methylation for directing tissue-specific gene expression is highly controversial. The cyclin A1 gene is expressed in very few tissues, with high levels restricted to spermatogenesis and leukemic blasts. Here, we show that methylation of the CpG island of the human cyclin A1 promoter was correlated with nonexpression in cell lines, and the methyl-CpG binding protein MeCP2 suppressed transcription from the methylated cyclin A1 promoter. Repression could be relieved by trichostatin A. Silencing of a cyclin A1 promoter-enhanced green fluorescent protein (EGFP) transgene in stable transfected MG63 osteosarcoma cells was also closely associated with de novo promoter methylation. Cyclin A1 could be strongly induced in nonexpressing cell lines by trichostatin A but not by 5-aza-cytidine. The cyclin A1 promoter-EGFP construct directed tissue-specific expression in male germ cells of transgenic mice. Expression in the testes of these mice was independent of promoter methylation, and even strong promoter methylation did not suppress promoter activity. MeCP2 expression was notably absent in EGFP-expressing cells. Transcription from the transgenic cyclin A1 promoter was repressed in most organs outside the testis, even when the promoter was not methylated. These data show the association of methylation with silencing of the cyclin A1 gene in cancer cell lines. However, appropriate tissue-specific repression of the cyclin A1 promoter occurs independently of CpG methylation.


1997 ◽  
Vol 107 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D. Doenecke ◽  
W. Albig ◽  
C. Bode ◽  
B. Drabent ◽  
K. Franke ◽  
...  

2001 ◽  
Vol 21 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Jian Yi Li ◽  
Ruben J. Boado ◽  
William M. Pardridge

The blood–brain barrier (BBB) is formed by the brain microvascular endothelium, and the unique transport properties of the BBB are derived from tissue-specific gene expression within this cell. The current studies developed a gene microarray approach specific for the BBB by purifying the initial mRNA from isolated rat brain capillaries to generate tester cDNA. A polymerase chain reaction–based subtraction cloning method, suppression subtractive hybridization (SSH), was used, and the BBB cDNA was subtracted with driver cDNA produced from mRNA isolated from rat liver and kidney. Screening 5% of the subtracted tester cDNA resulted in identification of 50 gene products and more than 80% of those were selectively expressed at the BBB; these included novel gene sequences not found in existing databases, ESTs, and known genes that were not known to be selectively expressed at the BBB. Genes in the latter category include tissue plasminogen activator, insulin-like growth factor-2, PC-3 gene product, myelin basic protein, regulator of G protein signaling 5, utrophin, IκB, connexin-45, the class I major histocompatibility complex, the rat homologue of the transcription factors hbrm or EZH1, and organic anion transporting polypeptide type 2. Knowledge of tissue-specific gene expression at the BBB could lead to new targets for brain drug delivery and could elucidate mechanisms of brain pathology at the microvascular level.


Sign in / Sign up

Export Citation Format

Share Document