scholarly journals Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: The role of the last glaciation

PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0197611 ◽  
Author(s):  
Angie Díaz ◽  
Karin Gérard ◽  
Claudio González-Wevar ◽  
Claudia Maturana ◽  
Jean-Pierre Féral ◽  
...  
2018 ◽  
Vol 601 ◽  
pp. 153-166 ◽  
Author(s):  
KJ Miller ◽  
HP Baird ◽  
J van Oosterom ◽  
J Mondon ◽  
CK King

Tellus B ◽  
2006 ◽  
Vol 58 (1) ◽  
Author(s):  
Andrew J. Watson ◽  
Alberto C. Naverira Garabato
Keyword(s):  

Development ◽  
1995 ◽  
Vol 121 (5) ◽  
pp. 1497-1505 ◽  
Author(s):  
A.H. Wikramanayake ◽  
B.P. Brandhorst ◽  
W.H. Klein

During early embryogenesis, the highly regulative sea urchin embryo relies extensively on cell-cell interactions for cellular specification. Here, the role of cellular interactions in the temporal and spatial expression of markers for oral and aboral ectoderm in Strongylocentrotus purpuratus and Lytechinus pictus was investigated. When pairs of mesomeres or animal caps, which are fated to give rise to ectoderm, were isolated and cultured they developed into ciliated embryoids that were morphologically polarized. In animal explants from S. purpuratus, the aboral ectoderm-specific Spec1 gene was activated at the same time as in control embryos and at relatively high levels. The Spec1 protein was restricted to the squamous epithelial cells in the embryoids suggesting that an oral-aboral axis formed and aboral ectoderm differentiation occurred correctly. However, the Ecto V protein, a marker for oral ectoderm differentiation, was detected throughout the embryoid and no stomodeum or ciliary band formed. These results indicated that animal explants from S. purpuratus were autonomous in their ability to form an oral-aboral axis and to differentiate aboral ectoderm, but other aspects of ectoderm differentiation require interaction with vegetal blastomeres. In contrast to S. purpuratus, aboral ectoderm-specific genes were not expressed in animal explants from L. pictus even though the resulting embryoids were morphologically very similar to those of S. purpuratus. Recombination of the explants with vegetal blastomeres or exposure to the vegetalizing agent LiCl restored activity of aboral ectoderm-specific genes, suggesting the requirement of a vegetal induction for differentiation of aboral ectoderm cells.(ABSTRACT TRUNCATED AT 250 WORDS)


Development ◽  
1970 ◽  
Vol 23 (3) ◽  
pp. 549-569
Author(s):  
G. A. Buznikov ◽  
A. N. Kost ◽  
N. F. Kucherova ◽  
A. L. Mndzhoyan ◽  
N. N. Suvorov ◽  
...  

In previous papers (Buznikov, Chudakova & Zvezdina, 1964; Buznikov, Chudakova, Berdysheva & Vyazmina, 1968) we reported that fertilized eggs of the sea-urchin Strongylocentrotus dröbachiensis synthesized a number of neurohumours, such as serotonin (5-hydroxytryptamine, 5-HT), acetylcholine (ACh), adrenalin (A), noradrenalin (NA) and dopamine. Synthesis of 5-HT was also demonstrated in the fertilized eggs of the loach Misgurnus fossilis and some marine Invertebrata. In experiments with sea-urchin embryos we were able to trace regular changes in the level of 5-HT, ACh, A and NA, related to the first cleavage divisions. This early onset of neurohumour synthesis, as well as regular changes in their level, suggests their direct involvement in the regulation of the first cleavage divisions. The functional activity of neurohumours (M) in adult organisms is realized through their reaction with the active sites of corresponding receptors (R) according to the following equation:The magnitude of the physiological effect under certain conditions is linearly proportional to the number of complexes MR formed (Turpayev, 1962; Ariëns, 1964).


Author(s):  
Karina González ◽  
Juan Gaitán-Espitia ◽  
Alejandro Font ◽  
César A. Cárdenas ◽  
Marcelo González-Aravena

Sign in / Sign up

Export Citation Format

Share Document