scholarly journals Conotoxin MVIIA improves cell viability and antioxidant system after spinal cord injury in rats

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0204948 ◽  
Author(s):  
Karen M. Oliveira ◽  
Nancy S. Binda ◽  
Mário Sérgio L. Lavor ◽  
Carla M. O. Silva ◽  
Isabel R. Rosado ◽  
...  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Sheng-Yu Cui ◽  
Wei Zhang ◽  
Zhi-Ming Cui ◽  
Hong Yi ◽  
Da-Wei Xu ◽  
...  

Abstract Background Spinal cord injury (SCI) is associated with health burden both at personal and societal levels. Recent assessments on the role of lncRNAs in SCI regulation have matured. Therefore, to comprehensively explore the function of lncRNA LEF1-AS1 in SCI, there is an urgent need to understand its occurrence and development. Methods Using in vitro experiments, we used lipopolysaccharide (LPS) to treat and establish the SCI model primarily on microglial cells. Gain- and loss of function assays of LEF1-AS1 and miR-222-5p were conducted. Cell viability and apoptosis of microglial cells were assessed via CCK8 assay and flow cytometry, respectively. Adult Sprague-Dawley (SD) rats were randomly divided into four groups: Control, SCI, sh-NC, and sh-LEF-AS1 groups. ELISA test was used to determine the expression of TNF-α and IL-6, whereas the protein level of apoptotic-related markers (Bcl-2, Bax, and cleaved caspase-3) was assessed using Western blot technique. Results We revealed that LncRNA LEF1-AS1 was distinctly upregulated, whereas miR-222-5p was significantly downregulated in LPS-treated SCI and microglial cells. However, LEF1-AS1 knockdown enhanced cell viability, inhibited apoptosis, as well as inflammation of LPS-mediated microglial cells. On the contrary, miR-222-5p upregulation decreased cell viability, promoted apoptosis, and inflammation of microglial cells. Mechanistically, LEF1-AS1 served as a competitive endogenous RNA (ceRNA) by sponging miR-222-5p, targeting RAMP3. RAMP3 overexpression attenuated LEF1-AS1-mediated protective effects on LPS-mediated microglial cells from apoptosis and inflammation. Conclusion In summary, these findings ascertain that knockdown of LEF1-AS1 impedes SCI progression via the miR-222-5p/RAMP3 axis.


2018 ◽  
Vol 234 (2) ◽  
pp. 244-251 ◽  
Author(s):  
Azim Patar ◽  
Peter Dockery ◽  
Linda Howard ◽  
Siobhan S. McMahon

Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1090-1100
Author(s):  
Xueren Zhong ◽  
Yongzheng Bao ◽  
Qiang Wu ◽  
Xinhua Xi ◽  
Wengang Zhu ◽  
...  

Abstract Long noncoding RNAs have been demonstrated to play crucial roles in the pathogenesis of spinal cord injury (SCI). In this study, we aimed to explore the roles and underlying mechanisms of lncRNA X-inactive specific transcript (XIST) in SCI progression. SCI mice model was constructed and evaluated by the Basso–Beattie–Bresnahan method. The SCI cell model was constructed by treating BV2 cells with lipopolysaccharide (LPS). The levels of XIST and miR-219-5p were determined by the reverse transcription quantitative polymerase chain reaction. The concentrations of inflammatory cytokines were measured by enzyme-linked immunosorbent assay. Protein levels were measured via western blot assay. Cell viability and apoptosis were evaluated by cell counting kit-8 assay and flow cytometry analysis, respectively. The relationship between XIST and miR-219-5p was analyzed by online tool starBase, dual-luciferase reporter assay, and RNA immunoprecipitation assay. As a result, the XIST level was enhanced and the miR-219-5p level was declined in the SCI mice model. XIST was also upregulated in LPS-induced BV2 cells. LPS treatment restrained BV2 cell viability and accelerated apoptosis and inflammatory response. XIST knockdown effectively weakened LPS-induced BV2 cell injury. miR-219-5p was identified as a target of XIST. Moreover, inhibition of miR-219-5p restored the impacts of XIST knockdown on cell viability, apoptosis, and inflammation in LPS-treated BV2 cells. In addition, LPS-induced XIST promoted the activation of the nuclear factor-κB (NF-κB) pathway by sponging miR-219-5p. In conclusion, XIST silencing promoted microglial cell viability and repressed apoptosis and inflammation by sponging miR-219-5p, thus promoting the recovery of SCI.


Sign in / Sign up

Export Citation Format

Share Document