scholarly journals Non-invasive in vivo imaging of UCP1 expression in live mice via near-infrared fluorescent protein iRFP720

PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0225213 ◽  
Author(s):  
Aya Fukuda ◽  
Shiho Honda ◽  
Norie Fujioka ◽  
Yuya Sekiguchi ◽  
Seiya Mizuno ◽  
...  
2011 ◽  
Vol 29 (8) ◽  
pp. 757-761 ◽  
Author(s):  
Grigory S Filonov ◽  
Kiryl D Piatkevich ◽  
Li-Min Ting ◽  
Jinghang Zhang ◽  
Kami Kim ◽  
...  

Nanoscale ◽  
2013 ◽  
Vol 5 (21) ◽  
pp. 10345 ◽  
Author(s):  
Yu Yang ◽  
Kun Xiang ◽  
Yi-Xin Yang ◽  
Yan-Wen Wang ◽  
Xin Zhang ◽  
...  

2020 ◽  
Author(s):  
Anna L. Koessinger ◽  
Dominik Koessinger ◽  
Katrina Stevenson ◽  
Catherine Cloix ◽  
Louise Mitchell ◽  
...  

AbstractDespite extensive research, little progress has been made in glioblastoma therapy, owing in part to a lack of adequate preclinical in vivo models to study this disease. To mitigate this, primary patient-derived cell lines, which maintain their specific stem-like phenotypes, have replaced established glioblastoma cell lines. However, due to heterogenous tumour growth inherent in glioblastoma, the use of primary cells for orthotopic in vivo studies often requires large experimental group sizes. Therefore, when using intracranial patient-derived xenograft (PDX) approaches, it is advantageous to deploy imaging techniques to monitor tumour growth and allow stratification of mice. Here we show that stable expression of near-infrared fluorescent protein (iRFP) in patient-derived glioblastoma cells enables rapid direct non-invasive monitoring of tumour development without compromising tumour stemness or tumorigenicity. Moreover, as this approach does not depend on the use of agents like luciferin, which can cause variability due to changing bioavailability, it can be used for quantitative longitudinal monitoring of tumour growth. Notably, we show that this technique also allows quantitative assessment of tumour burden in highly invasive models spreading throughout the brain. Thus, iRFP transduction of primary patient-derived glioblastoma cells is a reliable, cost- and time-effective way to monitor heterogenous orthotopic PDX growth.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2020 ◽  
Author(s):  
Fabian C. Herbert ◽  
Olivia Brohlin ◽  
Tyler Galbraith ◽  
Candace Benjamin ◽  
Cesar A. Reyes ◽  
...  

<div> <div> <div> <p>Icosahedral virus-like particles (VLPs) derived from bacteriophages Qβ and PP7 encapsulating small-ultra red fluorescent protein (smURFP) were produced using a versatile supramolecualr capsid dissassemble-reassemble approach. The generated fluorescent VLPs display identical structural properties to their non-fluorescent analogs. Encapsulated smURFP shows indistinguishable photochemical properties to its unencapsulated counterpart, exhibits outstanding stability towards pH, and produces bright in vitro images following phagocytosis by macrophages. In vivo imaging allows biodistribution to be imaged at different time points. Ex vivo imaging of intravenously administered encapsulated smURFP reveleas localization in the liver and </p> </div> </div> <div> <div> <p>kidneys after 2 h blood circulation and substantial elimination constructs as non-invasive in vivo imaging agents. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Kiryl Piatkevich ◽  
Hanbin Zhang ◽  
Stavrini Papadaki ◽  
Xiaoting Sun ◽  
Luxia Yao ◽  
...  

Abstract Recent progress in fluorescent protein development has generated a large diversity of near-infrared fluorescent proteins, which are rapidly becoming popular probes for a variety of imaging applications. To assist end-users with a selection of the right near-infrared fluorescent protein for a given application, we will conduct a quantitative assessment of intracellular brightness, photostability, and oligomeric state of 19 near-infrared fluorescent proteins in cultured mammalian cells. The top-performing proteins will be further validated for in vivo imaging of neurons in C. elegans, zebrafish, and mice. We will also assess the applicability of the selected NIR FPs for expansion microscopy and two-photon imaging.


2012 ◽  
Author(s):  
Arie Krumholz ◽  
Grigory S. Filonov ◽  
Jun Xia ◽  
Junjie Yao ◽  
Vladislav V. Verkhusha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document