scholarly journals Photoacoustic imaging of the near-infrared fluorescent protein iRFP in vivo

2012 ◽  
Author(s):  
Arie Krumholz ◽  
Grigory S. Filonov ◽  
Jun Xia ◽  
Junjie Yao ◽  
Vladislav V. Verkhusha ◽  
...  
2021 ◽  
Author(s):  
Kiryl Piatkevich ◽  
Hanbin Zhang ◽  
Stavrini Papadaki ◽  
Xiaoting Sun ◽  
Luxia Yao ◽  
...  

Abstract Recent progress in fluorescent protein development has generated a large diversity of near-infrared fluorescent proteins, which are rapidly becoming popular probes for a variety of imaging applications. To assist end-users with a selection of the right near-infrared fluorescent protein for a given application, we will conduct a quantitative assessment of intracellular brightness, photostability, and oligomeric state of 19 near-infrared fluorescent proteins in cultured mammalian cells. The top-performing proteins will be further validated for in vivo imaging of neurons in C. elegans, zebrafish, and mice. We will also assess the applicability of the selected NIR FPs for expansion microscopy and two-photon imaging.


2011 ◽  
Vol 29 (8) ◽  
pp. 757-761 ◽  
Author(s):  
Grigory S Filonov ◽  
Kiryl D Piatkevich ◽  
Li-Min Ting ◽  
Jinghang Zhang ◽  
Kami Kim ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0225213 ◽  
Author(s):  
Aya Fukuda ◽  
Shiho Honda ◽  
Norie Fujioka ◽  
Yuya Sekiguchi ◽  
Seiya Mizuno ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
C. Hall ◽  
Y. von Grabowiecki ◽  
S. P. Pearce ◽  
C. Dive ◽  
S. Bagley ◽  
...  

Abstract Background In vivo imaging using fluorescence is used in cancer biology for the detection, measurement and monitoring of tumours. This can be achieved with the expression of fluorescent proteins such as iRFP, which emits light at a wavelength less attenuated in biological tissues compared to light emitted by other fluorescent proteins such as GFP or RFP. Imaging platforms capable of detecting fluorescent tumours in small animals have been developed but studies comparing the performance of these platforms are scarce. Results Through access to three platforms from Xenogen, Bruker and Li-Cor, we compared their ability to detect iRFP-expressing subcutaneous tumours as well as tumours localised deeper within the body of female NSG mice. Each platform was paired with proprietary software for image analyse, but the output depends on subjective decisions from the user. To more objectively compare platforms, we developed an ‘in house’ software-based approach which results in lower measured variability between mice. Conclusions Our comparisons showed that all three platforms allowed for reliable detection and monitoring of subcutaneous iRFP tumour growth. The biggest differences between platforms became apparent when imaging deeper tumours with the Li-Cor platform detecting most tumours and showing the highest dynamic range.


Nanoscale ◽  
2013 ◽  
Vol 5 (21) ◽  
pp. 10345 ◽  
Author(s):  
Yu Yang ◽  
Kun Xiang ◽  
Yi-Xin Yang ◽  
Yan-Wen Wang ◽  
Xin Zhang ◽  
...  

2020 ◽  
Vol 1 (5) ◽  
pp. 967-987 ◽  
Author(s):  
Dhermendra K. Tiwari ◽  
Manisha Tiwari ◽  
Takashi Jin

This review presents the recent progress on NIR fluorescent protein and bioluminescence-based probes with high-resolution in vivo imaging techniques.


2020 ◽  
Author(s):  
Anna L. Koessinger ◽  
Dominik Koessinger ◽  
Katrina Stevenson ◽  
Catherine Cloix ◽  
Louise Mitchell ◽  
...  

AbstractDespite extensive research, little progress has been made in glioblastoma therapy, owing in part to a lack of adequate preclinical in vivo models to study this disease. To mitigate this, primary patient-derived cell lines, which maintain their specific stem-like phenotypes, have replaced established glioblastoma cell lines. However, due to heterogenous tumour growth inherent in glioblastoma, the use of primary cells for orthotopic in vivo studies often requires large experimental group sizes. Therefore, when using intracranial patient-derived xenograft (PDX) approaches, it is advantageous to deploy imaging techniques to monitor tumour growth and allow stratification of mice. Here we show that stable expression of near-infrared fluorescent protein (iRFP) in patient-derived glioblastoma cells enables rapid direct non-invasive monitoring of tumour development without compromising tumour stemness or tumorigenicity. Moreover, as this approach does not depend on the use of agents like luciferin, which can cause variability due to changing bioavailability, it can be used for quantitative longitudinal monitoring of tumour growth. Notably, we show that this technique also allows quantitative assessment of tumour burden in highly invasive models spreading throughout the brain. Thus, iRFP transduction of primary patient-derived glioblastoma cells is a reliable, cost- and time-effective way to monitor heterogenous orthotopic PDX growth.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Sign in / Sign up

Export Citation Format

Share Document