scholarly journals Non-spherical particles in optical tweezers: A numerical solution

PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0225773
Author(s):  
Joonas Herranen ◽  
Johannes Markkanen ◽  
Gorden Videen ◽  
Karri Muinonen
1978 ◽  
Vol 45 (4) ◽  
pp. 711-716 ◽  
Author(s):  
Stephen S.-H. Chang

This paper presents a method for computing the motion and decay of a large dusty, buoyant thermal (cloud) carried by a vortex ring generated from a strong near ground explosion and ascending in an inhomogeneous atmosphere. A system of equations is derived describing the motion of the vortex ring, the thermal, and the pollutants which consist of numerous solid spherical particles. The interior properties and the trajectories of the thermal and the pollutants are obtained. The numerical solution for the thermal trajectory is in excellent agreement with experiment.


Author(s):  
Muruga Lokesh ◽  
Rahul Vaippully ◽  
Vidya P. Bhallamudi ◽  
Anil Prabhakar ◽  
Basudev Roy

Abstract 3D Pitch (out-of-plane) rotational motion has been generated in spherical particles by maneuvering the laser spots of holographic optical tweezers. However, since the spherical particles, which are required to minimise drag are perfectly isotropic, a controllable torque cannot be applied with it. It remains free to spin about any axis even after moving the tweezers beams. It is here that we trap birefringent particles of about 3 $\mu$m diameter in two tweezers beams and then change the depth of one of the beam foci controllably to generate a pitch rotational torque-wrench and avoid the free spinning of the particle. We also detect the rotation with newly developed pitch motion detection technique and apply controlled torques on the particle.


2006 ◽  
Vol 258-260 ◽  
pp. 592-599
Author(s):  
João M.P.Q. Delgado ◽  
M.A. Alves ◽  
J.R.F.G Carvalho

This work describes the process of mass transfer which takes place when a fluid flows past a soluble surface buried in a packed bed of small inert spherical particles of uniform voidage. The fluid is assumed to have uniform velocity far from the buried surface and different surface geometries are considered; namely, cylinder in cross flow and in flow aligned with the axis, flat surface aligned with the flow and sphere. The differential equations describing fluid flow and mass transfer by advection and diffusion in the interstices of the bed are presented and the method for obtaining their numerical solution is indicated. From the near surface concentration fields, given by the numerical solution, rates of mass transfer from the surface are computed and expressed in the form of a Sherwood number (Sh). The dependence between Sh and the Peclet number for flow past the surface is then established for each of the flow geometries. Finally, equations are derived for the concentration contour surfaces at a large distance from the soluble solids, by substituting the information obtained on mass transfer rates in the equation describing solute spreading in uniform flow past a point (or line) source.


2009 ◽  
Vol 1182 ◽  
Author(s):  
Kursat Sendur

AbstractAn integral equation based numerical solution is developed when the particles are illuminated with collimated and focused incident beams. The solution procedure uses the method of weighted residuals, in which the integral equation is reduced to a matrix equation and then solved for the unknown electric field distribution. In the solution procedure, the effects of the surrounding medium and boundaries are taken into account using a Green’s function formulation. Therefore, there is no additional error due to artificial boundary conditions unlike differential equation based techniques, such as finite difference time domain and finite element method. In this formulation, only the scattering nano-particle is discretized. The results are compared to the analytical Mie series solution for spherical particles, as well as to the finite element method for rectangular metallic particles. The Richards-Wolf vector field equations are combined with the integral equation based formulation to model the interaction of nanoparticles with linearly and radially polarized incident focused beams.


Author(s):  
Arvind Balijepalli ◽  
Thomas W. LeBrun ◽  
Satyandra K. Gupta

Methods to implement stochastic simulations on the graphics processing unit (GPU) have been developed. These algorithms are used in a simulation of microassembly and nanoassembly with optical tweezers, but are also directly compatible with simulations of a wide variety of assembly techniques using either electrophoretic, magnetic, or other trapping techniques. Significant speedup is possible for stochastic particle simulations when using the GPU, included in most personal computers (PCs), rather than the central processing unit (CPU) that handles most calculations. However, a careful analysis of the accuracy and precision when using the GPU in stochastic simulations is lacking and is addressed here. A stochastic simulation for spherical particles has been developed and mapped onto stages of the GPU hardware that provide the best performance. The results from the CPU and GPU implementation are then compared with each other and with well-established theory. The error in the mean ensemble energy and the diffusion constant is measured for both the CPU and the GPU implementations. The time taken to complete several simulation experiments on each platform has also been measured and the speedup attained by the GPU is then calculated.


Author(s):  
Daniel UGARTE

Small particles exhibit chemical and physical behaviors substantially different from bulk materials. This is due to the fact that boundary conditions can induce specific constraints on the observed properties. As an example, energy loss experiments carried out in an analytical electron microscope, constitute a powerful technique to investigate the excitation of collective surface modes (plasmons), which are modified in a limited size medium. In this work a STEM VG HB501 has been used to study the low energy loss spectrum (1-40 eV) of silicon spherical particles [1], and the spatial localization of the different modes has been analyzed through digitally acquired energy filtered images. This material and its oxides have been extensively studied and are very well characterized, because of their applications in microelectronics. These particles are thus ideal objects to test the validity of theories developed up to now.Typical EELS spectra in the low loss region are shown in fig. 2 and energy filtered images for the main spectral features in fig. 3.


Sign in / Sign up

Export Citation Format

Share Document