Numerical solution of the HNC equation for fluids of non-spherical particles. An efficient method with application to dipolar hard spheres

1991 ◽  
Vol 74 (2) ◽  
pp. 443-464 ◽  
Author(s):  
M. Kinoshita ◽  
M. Harada
1978 ◽  
Vol 45 (4) ◽  
pp. 711-716 ◽  
Author(s):  
Stephen S.-H. Chang

This paper presents a method for computing the motion and decay of a large dusty, buoyant thermal (cloud) carried by a vortex ring generated from a strong near ground explosion and ascending in an inhomogeneous atmosphere. A system of equations is derived describing the motion of the vortex ring, the thermal, and the pollutants which consist of numerous solid spherical particles. The interior properties and the trajectories of the thermal and the pollutants are obtained. The numerical solution for the thermal trajectory is in excellent agreement with experiment.


2019 ◽  
Vol 4 (1) ◽  
pp. 68-74
Author(s):  
Aleš Dakskobler ◽  
Matjaz Valant

Background: Studies on the formation of colloidal crystals in concentrated suspensions have mainly been based on dispersed suspensions with a repulsive inter-particle potential of hard or nearly hard spheres. The self-assembly in weakly-flocculated suspensions has still been unrealized. Here, we report on the formation of ordered structures in concentrated suspensions of nearly-hard spherical particles with weakly-attractive inter-particle interactions that are an order of magnitude higher than the particles’ thermal energy. Methods: In our case, the self-assembly in such suspensions is not thermodynamically driven, but an external shear force must be applied. The driving force for the particles’ ordering is an increase in the inter-particle interactions. This manifests itself in a decrease in the average angle between the interparticle interaction direction and the applied shear stress direction. Results: For a successful ordering into a large-scale closed packed assembly, the external shear force must not exceed the inter-particle attractive interaction for the minimum possible average angle (as in the closed packed structures) but be high enough to enable the particles to move in the highly loaded suspension. Conclusion: The developed method for the self-assembly of the weakly flocculated systems can be applied very generally e.g. a control over a composition of heterogeneous colloidal crystals, manufacturing of the large-scale photonic crystals or preparation of very densely packed compacts of particles needed for the production of sintered ceramics.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 70
Author(s):  
Mina Torabi ◽  
Mohammad-Mehdi Hosseini

This paper presents a new efficient method for the numerical solution of a linear time-dependent partial differential equation. The proposed technique includes the collocation method with Legendre wavelets for spatial discretization and the three-step Taylor method for time discretization. This procedure is third-order accurate in time. A comparative study between the proposed method and the one-step wavelet collocation method is provided. In order to verify the stability of these methods, asymptotic stability analysis is employed. Numerical illustrations are investigated to show the reliability and efficiency of the proposed method. An important property of the presented method is that unlike the one-step wavelet collocation method, it is not necessary to choose a small time step to achieve stability.


2006 ◽  
Vol 258-260 ◽  
pp. 592-599
Author(s):  
João M.P.Q. Delgado ◽  
M.A. Alves ◽  
J.R.F.G Carvalho

This work describes the process of mass transfer which takes place when a fluid flows past a soluble surface buried in a packed bed of small inert spherical particles of uniform voidage. The fluid is assumed to have uniform velocity far from the buried surface and different surface geometries are considered; namely, cylinder in cross flow and in flow aligned with the axis, flat surface aligned with the flow and sphere. The differential equations describing fluid flow and mass transfer by advection and diffusion in the interstices of the bed are presented and the method for obtaining their numerical solution is indicated. From the near surface concentration fields, given by the numerical solution, rates of mass transfer from the surface are computed and expressed in the form of a Sherwood number (Sh). The dependence between Sh and the Peclet number for flow past the surface is then established for each of the flow geometries. Finally, equations are derived for the concentration contour surfaces at a large distance from the soluble solids, by substituting the information obtained on mass transfer rates in the equation describing solute spreading in uniform flow past a point (or line) source.


Author(s):  
M. H. Heydari ◽  
H. Laeli Dastjerdi ◽  
M. Nili Ahmadabadi

AbstractWe introduce a mesh-free method, i.e., MLS collocation method for the numerical solution of a kind of nonlinear fractional Fredholm integro-differential equation. An error bound is provided for the proposed method which supports its convergence. Detailed numerical experiments approve its excellency in attaining the desired accuracy for a quite low computational cost. We have also compared linear basis with quadratic basis in terms of CPU time.


1996 ◽  
Vol 312 ◽  
pp. 223-252 ◽  
Author(s):  
Jeffrey F. Morris ◽  
John F. Brady

Self-diffusion in a suspension of spherical particles in steady linear shear flow is investigated by following the time evolution of the correlation of number density fluctuations. Expressions are presented for the evaluation of the self-diffusivity in a suspension which is either raacroscopically quiescent or in linear flow at arbitrary Peclet number $Pe = \dot{\gamma}a^2/2D$, where $\dot{\gamma}$ is the shear rate, a is the particle radius, and D = kBT/6πa is the diffusion coefficient of an isolated particle. Here, kB is Boltzmann's constant, T is the absolute temperature, and η is the viscosity of the suspending fluid. The short-time self-diffusion tensor is given by kBT times the microstructural average of the hydrodynamic mobility of a particle, and depends on the volume fraction $\phi = \frac{4}{3}\pi a^3n$ and Pe only when hydrodynamic interactions are considered. As a tagged particle moves through the suspension, it perturbs the average microstructure, and the long-time self-diffusion tensor, D∞s, is given by the sum of D0s and the correlation of the flux of a tagged particle with this perturbation. In a flowing suspension both D0s and D∞ are anisotropic, in general, with the anisotropy of D0s due solely to that of the steady microstructure. The influence of flow upon D∞s is more involved, having three parts: the first is due to the non-equilibrium microstructure, the second is due to the perturbation to the microstructure caused by the motion of a tagged particle, and the third is by providing a mechanism for diffusion that is absent in a quiescent suspension through correlation of hydrodynamic velocity fluctuations.The self-diffusivity in a simply sheared suspension of identical hard spheres is determined to O(øPe3/2) for Pe ≤ 1 and ø ≤ 1, both with and without hydro-dynamic interactions between the particles. The leading dependence upon flow of D0s is 0.22DøPeÊ, where Ê is the rate-of-strain tensor made dimensionless with $\dot{\gamma}$. Regardless of whether or not the particles interact hydrodynamically, flow influences D∞s at O(øPe) and O(øPe3/2). In the absence of hydrodynamics, the leading correction is proportional to øPeDÊ. The correction of O(øPe3/2), which results from a singular advection-diffusion problem, is proportional, in the absence of hydrodynamic interactions, to øPe3/2DI; when hydrodynamics are included, the correction is given by two terms, one proportional to Ê, and the second a non-isotropic tensor.At high ø a scaling theory based on the approach of Brady (1994) is used to approximate D∞s. For weak flows the long-time self-diffusivity factors into the product of the long-time self-diffusivity in the absence of flow and a non-dimensional function of $\bar{P}e = \dot{\gamma}a^2/2D^s_0(\phi)$. At small $\bar{P}e$ the dependence on $\bar{P}e$ is the same as at low ø.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0225773
Author(s):  
Joonas Herranen ◽  
Johannes Markkanen ◽  
Gorden Videen ◽  
Karri Muinonen

1870 ◽  
Vol 15 (5) ◽  
pp. 313-328
Author(s):  
W. S. B. Woolhouse

The ultimate object of the following paper is to elicit a practical and efficient method of resolving, numerically, problems of every description involving an unknown quantity. In order to accomplish this end with the utmost generality, the most important step is to determine the inversion of a given function in a suitable and convenient series, involving the differential coefficients which appertain to an approximate value of the variable.


Sign in / Sign up

Export Citation Format

Share Document