scholarly journals Graph-based feature extraction: A new proposal to study the classification of music signals outside the time-frequency domain

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240915
Author(s):  
Dirceu de Freitas Piedade Melo ◽  
Inacio de Sousa Fadigas ◽  
Hernane Borges de Barros Pereira

Most feature extraction algorithms for music audio signals use Fourier transforms to obtain coefficients that describe specific aspects of music information within the sound spectrum, such as the timbral texture, tonal texture and rhythmic activity. In this paper, we introduce a new method for extracting features related to the rhythmic activity of music signals using the topological properties of a graph constructed from an audio signal. We map the local standard deviation of a music signal to a visibility graph and calculate the modularity (Q), the number of communities (Nc), the average degree (〈k〉), and the density (Δ) of this graph. By applying this procedure to each signal in a database of various musical genres, we detected the existence of a hierarchy of rhythmic self-similarities between musical styles given by these four network properties. Using Q, Nc, 〈k〉 and Δ as input attributes in a classification experiment based on supervised artificial neural networks, we obtained an accuracy higher than or equal to the beat histogram in 70% of the musical genre pairs, using only four features from the networks. Finally, when performing the attribute selection test with Q, Nc, 〈k〉 and Δ, along with the main signal processing field descriptors, we found that the four network properties were among the top-ranking positions given by this test.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jingwen Zhang

With the rapid development of information technology and communication, digital music has grown and exploded. Regarding how to quickly and accurately retrieve the music that users want from huge bulk of music repository, music feature extraction and classification are considered as an important part of music information retrieval and have become a research hotspot in recent years. Traditional music classification approaches use a large number of artificially designed acoustic features. The design of features requires knowledge and in-depth understanding in the domain of music. The features of different classification tasks are often not universal and comprehensive. The existing approach has two shortcomings as follows: ensuring the validity and accuracy of features by manually extracting features and the traditional machine learning classification approaches not performing well on multiclassification problems and not having the ability to be trained on large-scale data. Therefore, this paper converts the audio signal of music into a sound spectrum as a unified representation, avoiding the problem of manual feature selection. According to the characteristics of the sound spectrum, the research has combined 1D convolution, gating mechanism, residual connection, and attention mechanism and proposed a music feature extraction and classification model based on convolutional neural network, which can extract more relevant sound spectrum characteristics of the music category. Finally, this paper designs comparison and ablation experiments. The experimental results show that this approach is better than traditional manual models and machine learning-based approaches.


Author(s):  
Mina Mounir ◽  
Peter Karsmakers ◽  
Toon van Waterschoot

AbstractIf music is the language of the universe, musical note onsets may be the syllables for this language. Not only do note onsets define the temporal pattern of a musical piece, but their time-frequency characteristics also contain rich information about the identity of the musical instrument producing the notes. Note onset detection (NOD) is the basic component for many music information retrieval tasks and has attracted significant interest in audio signal processing research. In this paper, we propose an NOD method based on a novel feature coined as Normalized Identification of Note Onset based on Spectral Sparsity (NINOS2). The NINOS2 feature can be thought of as a spectral sparsity measure, aiming to exploit the difference in spectral sparsity between the different parts of a musical note. This spectral structure is revealed when focusing on low-magnitude spectral components that are traditionally filtered out when computing note onset features. We present an extensive set of NOD simulation results covering a wide range of instruments, playing styles, and mixing options. The proposed algorithm consistently outperforms the baseline Logarithmic Spectral Flux (LSF) feature for the most difficult group of instruments which are the sustained-strings instruments. It also shows better performance for challenging scenarios including polyphonic music and vibrato performances.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tianzhuo Gong ◽  
Sibing Sun

The digitization, analysis, and processing technology of music signals are the core of digital music technology. There is generally a preprocessing process before the music signal processing. The preprocessing process usually includes antialiasing filtering, digitization, preemphasis, windowing, and framing. Songs in the popular wav format and MP3 format on the Internet are all songs that have been processed by digital technology and do not need to be digitalized. Preprocessing can affect the effectiveness and reliability of the feature parameter extraction of music signals. Since the music signal is a kind of voice signal, the processing of the voice is also applicable to the music signal. In the study of adaptive wave equation inversion, the traditional full-wave equation inversion uses the minimum mean square error between real data and simulated data as the objective function. The gradient direction is determined by the cross-correlation of the back propagation residual wave field and the forward simulation wave field with respect to the second derivative of time. When there is a big gap between the initial model and the formal model, the phenomenon of cycle jumping will inevitably appear. In this paper, adaptive wave equation inversion is used. This method adopts the idea of penalty function and introduces the Wiener filter to establish a dual objective function for the phase difference that appears in the inversion. This article discusses the calculation formulas of the accompanying source, gradient, and iteration step length and uses the conjugate gradient method to iteratively reduce the phase difference. In the test function group and the recorded music signal library, a large number of simulation experiments and comparative analysis of the music signal recognition experiment were performed on the extracted features, which verified the time-frequency analysis performance of the wave equation inversion and the improvement of the decomposition algorithm. The features extracted by the wave equation inversion have a higher recognition rate than the features extracted based on the standard decomposition algorithm, which verifies that the wave equation inversion has a better decomposition ability.


2005 ◽  
Vol 33 (1) ◽  
pp. 2-17 ◽  
Author(s):  
D. Colbry ◽  
D. Cherba ◽  
J. Luchini

Abstract Commercial databases containing images of tire tread patterns are currently used by product designers, forensic specialists and product application personnel to identify whether a given tread pattern matches an existing tire. Currently, this pattern matching process is almost entirely manual, requiring visual searches of extensive libraries of tire tread patterns. Our work explores a first step toward automating this pattern matching process by building on feature analysis techniques from computer vision and image processing to develop a new method for extracting and classifying features from tire tread patterns and automatically locating candidate matches from a database of existing tread pattern images. Our method begins with a selection of tire tread images obtained from multiple sources (including manufacturers' literature, Web site images, and Tire Guides, Inc.), which are preprocessed and normalized using Two-Dimensional Fast Fourier Transforms (2D-FFT). The results of this preprocessing are feature-rich images that are further analyzed using feature extraction algorithms drawn from research in computer vision. A new, feature extraction algorithm is developed based on the geometry of the 2D-FFT images of the tire. The resulting FFT-based analysis allows independent classification of the tire images along two dimensions, specifically by separating “rib” and “lug” features of the tread pattern. Dimensionality of (0,0) indicates a smooth treaded tire with no pattern; dimensionality of (1,0) and (0,1) are purely rib and lug tires; and dimensionality of (1,1) is an all-season pattern. This analysis technique allows a candidate tire to be classified according to the features of its tread pattern, and other tires with similar features and tread pattern classifications can be automatically retrieved from the database.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3524
Author(s):  
Rongru Wan ◽  
Yanqi Huang ◽  
Xiaomei Wu

Ventricular fibrillation (VF) is a type of fatal arrhythmia that can cause sudden death within minutes. The study of a VF detection algorithm has important clinical significance. This study aimed to develop an algorithm for the automatic detection of VF based on the acquisition of cardiac mechanical activity-related signals, namely ballistocardiography (BCG), by non-contact sensors. BCG signals, including VF, sinus rhythm, and motion artifacts, were collected through electric defibrillation experiments in pigs. Through autocorrelation and S transform, the time-frequency graph with obvious information of cardiac rhythmic activity was obtained, and a feature set of 13 elements was constructed for each 7 s segment after statistical analysis and hierarchical clustering. Then, the random forest classifier was used to classify VF and non-VF, and two paradigms of intra-patient and inter-patient were used to evaluate the performance. The results showed that the sensitivity and specificity were 0.965 and 0.958 under 10-fold cross-validation, and they were 0.947 and 0.946 under leave-one-subject-out cross-validation. In conclusion, the proposed algorithm combining feature extraction and machine learning can effectively detect VF in BCG, laying a foundation for the development of long-term self-cardiac monitoring at home and a VF real-time detection and alarm system.


2020 ◽  
pp. 102986492097216
Author(s):  
Gaelen Thomas Dickson ◽  
Emery Schubert

Background: Music is thought to be beneficial as a sleep aid. However, little research has explicitly investigated the specific characteristics of music that aid sleep and some researchers assume that music described as generically sedative (slow, with low rhythmic activity) is necessarily conducive to sleep, without directly interrogating this assumption. This study aimed to ascertain the features of music that aid sleep. Method: As part of an online survey, 161 students reported the pieces of music they had used to aid sleep, successfully or unsuccessfully. The participants reported 167 pieces, some more often than others. Nine features of the pieces were analyzed using a combination of music information retrieval methods and aural analysis. Results: Of the pieces reported by participants, 78% were successful in aiding sleep. The features they had in common were that (a) their main frequency register was middle range frequencies; (b) their tempo was medium; (c) their articulation was legato; (d) they were in the major mode, and (e) lyrics were present. They differed from pieces that were unsuccessful in aiding sleep in that (a) their main frequency register was lower; (b) their articulation was legato, and (c) they excluded high rhythmic activity. Conclusion: Music that aids sleep is not necessarily sedative music, as defined in the literature, but some features of sedative music are associated with aiding sleep. In the present study, we identified the specific features of music that were reported to have been successful and unsuccessful in aiding sleep. The identification of these features has important implications for the selection of pieces of music used in research on sleep.


2021 ◽  
Vol 63 (8) ◽  
pp. 465-471
Author(s):  
Shang Zhiwu ◽  
Yu Yan ◽  
Geng Rui ◽  
Gao Maosheng ◽  
Li Wanxiang

Aiming at the local fault diagnosis of planetary gearbox gears, a feature extraction method based on improved dynamic time warping (IDTW) is proposed. As a calibration matching algorithm, the dynamic time warping method can detect the differences between a set of time-domain signals. This paper applies the method to fault diagnosis. The method is simpler and more intuitive than feature extraction methods in the frequency domain and the time-frequency domain, avoiding their limitations and disadvantages. Due to the shortcomings of complex calculation, singularity and poor robustness, the paper proposes an improved method. Finally, the method is verified by envelope spectral feature analysis and the local fault diagnosis of gears is realised.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Sign in / Sign up

Export Citation Format

Share Document