scholarly journals Hsp104-dependent ability to assimilate mannitol and sorbitol conferred by a truncated Cyc8 with a C-terminal polyglutamine in Saccharomyces cerevisiae

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242054
Author(s):  
Hideki Tanaka ◽  
Kousaku Murata ◽  
Wataru Hashimoto ◽  
Shigeyuki Kawai

Tup1-Cyc8 (also known as Tup1-Ssn6) is a general transcriptional corepressor. D-Mannitol (mannitol) and D-sorbitol (sorbitol) are the major polyols in nature. Budding yeast Saccharomyces cerevisiae is unable to assimilate mannitol or sorbitol, but acquires the ability to assimilate mannitol due to a spontaneous mutation in TUP1 or CYC8. In this study, we found that spontaneous mutation of TUP1 or CYC8 also permitted assimilation of sorbitol. Some spontaneous nonsense mutations of CYC8 produced a truncated Cyc8 with a C-terminal polyglutamine. The effects were guanidine hydrochloride-sensitive and were dependent on Hsp104, but were complemented by introduction of CYC8, ruling out involvement of a prion. Assimilation of mannitol and sorbitol conferred by other mutations of TUP1 or CYC8 was guanidine hydrochloride-tolerant. It is physiologically reasonable that S. cerevisiae carries this mechanism to acquire the ability to assimilate major polyols in nature.

Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1491-1505 ◽  
Author(s):  
Bernard A Kunz ◽  
Karthikeyan Ramachandran ◽  
Edward J Vonarx

AbstractTo help elucidate the mechanisms involved in spontaneous mutagenesis, DNA sequencing has been applied to characterize the types of mutation whose rates are increased or decreased in mutator or antimutator strains, respectively. Increased spontaneous mutation rates point to malfunctions in genes that normally act to reduce spontaneous mutation, whereas decreased rates are associated with defects in genes whose products are necessary for spontaneous mutagenesis. In this article, we survey and discuss the mutational specificities conferred by mutator and antimutator genes in the budding yeast Saccharomyces cerevisiae. The implications of selected aspects of the data are considered with respect to the mechanisms of spontaneous mutagenesis.


2019 ◽  
Author(s):  
Courtney R. Johnson ◽  
Marc G. Steingesser ◽  
Andrew D. Weems ◽  
Anum Khan ◽  
Amy Gladfelter ◽  
...  

ABSTRACTSeptin proteins co-assemble into hetero-oligomers that polymerize into cytoskeletal filaments with a variety of cellular functions. In Saccharomyces cerevisiae, where septins were first discovered, five subunits comprise two species of septin hetero-octamers, Cdc11/Shs1–Cdc12–Cdc3–Cdc10– Cdc10–Cdc3–Cdc12–Cdc11/Shs1. Septins evolved from ancestral GTPases. We previously found evidence that slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1 into septin complexes. It was unclear why many septins, including Cdc3, lack GTPase activity. We serendipitously discovered that the small molecule guanidine hydrochloride (GdnHCl) rescues septin function in cdc10 mutants by promoting assembly of non-native Cdc11/Shs1–Cdc12–Cdc3– Cdc3–Cdc12–Cdc11/Shs1 hexamers. We provide evidence that in S. cerevisiae Cdc3 guanidinium ion (Gdm) occupies the site of a “missing” Arg sidechain that is present in other fungal species in which (i) the Cdc3 subunit is an active GTPase and (ii) Cdc10-less hexamers co-exist with octamers in wild-type cells. These findings support a model in which Gdm reactivates a latent septin assembly pathway that was suppressed during fungal evolution in order to restrict assembly to hetero-octamers. Given that septin hexamers made natively in human cells also exclude Cdc10-like central subunits via homodimerization of an active GTPase, our results provide new mechanistic details that likely apply to septin assembly throughout phylogeny.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Courtney R Johnson ◽  
Marc G Steingesser ◽  
Andrew D Weems ◽  
Anum Khan ◽  
Amy Gladfelter ◽  
...  

Septin proteins evolved from ancestral GTPases and co-assemble into hetero-oligomers and cytoskeletal filaments. In Saccharomyces cerevisiae, five septins comprise two species of hetero-octamers, Cdc11/Shs1–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11/Shs1. Slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1, but many septins, including Cdc3, lack GTPase activity. We serendipitously discovered that guanidine hydrochloride rescues septin function in cdc10 mutants by promoting assembly of non-native Cdc11/Shs1–Cdc12–Cdc3–Cdc3–Cdc12–Cdc11/Shs1 hexamers. We provide evidence that in S. cerevisiae Cdc3 guanidinium occupies the site of a ‘missing’ Arg side chain found in other fungal species where (i) the Cdc3 subunit is an active GTPase and (ii) Cdc10-less hexamers natively co-exist with octamers. We propose that guanidinium reactivates a latent septin assembly pathway that was suppressed during fungal evolution in order to restrict assembly to octamers. Since homodimerization by a GTPase-active human septin also creates hexamers that exclude Cdc10-like central subunits, our new mechanistic insights likely apply throughout phylogeny.


Microbiology ◽  
1997 ◽  
Vol 143 (6) ◽  
pp. 1867-1876 ◽  
Author(s):  
P. A. Radcliffe ◽  
K. M. Binley ◽  
J. Trevethick ◽  
M. Hall ◽  
P. E. Sudbery

Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Yingying Yang ◽  
Anthony L Johnson ◽  
Leland H Johnston ◽  
Wolfram Siede ◽  
Errol C Friedberg ◽  
...  

Abstract RAD3 functions in DNA repair and transcription in Saccharomyces cerevisiae and particular rad3 alleles confer a mutator phenotype, possibly as a consequence of defective mismatch correction. We assessed the potential involvement of the Rad3 protein in mismatch correction by comparing heteroduplex repair in isogenic rad3-1 and wild-type strains. The rad3-1 allele increased the spontaneous mutation rate but did not prevent heteroduplex repair or bias its directionality. Instead, the efficiency of mismatch correction was enhanced in the rad3-1 strain. This surprising result prompted us to examine expression of yeast mismatch repair genes. We determined that MSH2, but not MLH1, is transcriptionally regulated during the cell-cycle like PMSl, and that rad3-1 does not increase the transcript levels for these genes in log phase cells. These observations suggest that the rad3-1 mutation gives rise to an enhanced efficiency of mismatch correction via a process that does not involve transcriptional regulation of mismatch repair. Interestingly, mismatch repair also was more efficient when error-editing by yeast DNA polymerase δ was eliminated. We discuss our results in relation to possible mechanisms that may link the rad3-1 mutation to mismatch correction efficiency.


Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 81-95 ◽  
Author(s):  
E J Louis ◽  
J E Haber

Abstract The presence of the tRNA ochre suppressors SUP11 and SUP5 is found to induce meiosis I nondisjunction in the yeast Saccharomyces cerevisiae. The induction increases with increasing dosage of the suppressor and decreases in the presence of an antisuppressor. The effect is independent of the chromosomal location of SUP11. Each of five different chromosomes monitored exhibited nondisjunction at frequencies of 0.1%-1.1% of random spores, which is a 16-160-fold increase over wild-type levels. Increased nondisjunction is reflected by a marked increase in tetrads with two and zero viable spores. In the case of chromosome III, for which a 50-cM map interval was monitored, the resulting disomes are all in the parental nonrecombinant configuration. Recombination along chromosome III appears normal both in meioses that have no nondisjunction and in meioses for which there was nondisjunction of another chromosome. We propose that a proportion of one or more proteins involved in chromosome pairing, recombination or segregation are aberrant due to translational read-through of the normal ochre stop codon. Hygromycin B, an antibiotic that can suppress nonsense mutations via translational read-through, also induces nonrecombinant meiosis I nondisjunction. Increases in mistranslation, therefore, increase the production of aneuploids during meiosis. There was no observable effect of SUP11 on mitotic chromosome nondisjunction; however some disomes caused SUP11 ade2-ochre strains to appear white or red, instead of pink.


1994 ◽  
Vol 14 (9) ◽  
pp. 6350-6360
Author(s):  
F Houman ◽  
C Holm

To investigate chromosome segregation in Saccharomyces cerevisiae, we examined a collection of temperature-sensitive mutants that arrest as large-budded cells at restrictive temperatures (L. H. Johnston and A. P. Thomas, Mol. Gen. Genet. 186:439-444, 1982). We characterized dbf8, a mutation that causes cells to arrest with a 2c DNA content and a short spindle. DBF8 maps to chromosome IX near the centromere, and it encodes a 36-kDa protein that is essential for viability at all temperatures. Mutational analysis reveals that three dbf8 alleles are nonsense mutations affecting the carboxy-terminal third of the encoded protein. Since all of these mutations confer temperature sensitivity, it appears that the carboxyl-terminal third of the protein is essential only at a restrictive temperature. In support of this conclusion, an insertion of URA3 at the same position also confers a temperature-sensitive phenotype. Although they show no evidence of DNA damage, dbf8 mutants exhibit increased rates of chromosome loss and nondisjunction even at a permissive temperature. Taken together, our data suggest that Dbf8p plays an essential role in chromosome segregation.


Sign in / Sign up

Export Citation Format

Share Document