scholarly journals Natural history study of glycan accumulation in large animal models of GM2 gangliosidoses

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243006
Author(s):  
Catlyn Cavender ◽  
Linley Mangini ◽  
Jeremy L. Van Vleet ◽  
Carley Corado ◽  
Emma McCullagh ◽  
...  

β-hexosaminidase is an enzyme responsible for the degradation of gangliosides, glycans, and other glycoconjugates containing β-linked hexosamines that enter the lysosome. GM2 gangliosidoses, such as Tay-Sachs and Sandhoff, are lysosomal storage disorders characterized by β-hexosaminidase deficiency and subsequent lysosomal accumulation of its substrate metabolites. These two diseases result in neurodegeneration and early mortality in children. A significant difference between these two disorders is the accumulation in Sandhoff disease of soluble oligosaccharide metabolites that derive from N- and O-linked glycans. In this paper we describe our results from a longitudinal biochemical study of a feline model of Sandhoff disease and an ovine model of Tay-Sachs disease to investigate the accumulation of GM2/GA2 gangliosides, a secondary biomarker for phospholipidosis, bis-(monoacylglycero)-phosphate, and soluble glycan metabolites in both tissue and fluid samples from both animal models. While both Sandhoff cats and Tay-Sachs sheep accumulated significant amounts of GM2 and GA2 gangliosides compared to age-matched unaffected controls, the Sandhoff cats having the more severe disease, accumulated larger amounts of gangliosides compared to Tay-Sachs sheep in their occipital lobes. For monitoring glycan metabolites, we developed a quantitative LC/MS assay for one of these free glycans in order to perform longitudinal analysis. The Sandhoff cats showed significant disease-related increases in this glycan in brain and in other matrices including urine which may provide a useful clinical tool for measuring disease severity and therapeutic efficacy. Finally, we observed age-dependent increasing accumulation for a number of analytes, especially in Sandhoff cats where glycosphingolipid, phospholipid, and glycan levels showed incremental increases at later time points without signs of peaking. This large animal natural history study for Sandhoff and Tay-Sachs is the first of its kind, providing insight into disease progression at the biochemical level. This report may help in the development and testing of new therapies to treat these disorders.

2021 ◽  
Vol 132 (2) ◽  
pp. S48-S49
Author(s):  
Benedicte Heron-Longe ◽  
Spyros Batzios ◽  
Eugen Mengel ◽  
Roberto Giugliani ◽  
Marc Patterson ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 6092
Author(s):  
Bastian Amend ◽  
Niklas Harland ◽  
Jasmin Knoll ◽  
Arnulf Stenzl ◽  
Wilhelm K. Aicher

Stress urinary incontinence (SUI) is a significant health concern for patients affected, impacting their quality of life severely. To investigate mechanisms contributing to SUI different animal models were developed. Incontinence was induced under defined conditions to explore the pathomechanisms involved, spontaneous recovery, or efficacy of therapies over time. The animal models were coined to mimic known SUI risk factors such as childbirth or surgical injury. However, animal models neither reflect the human situation completely nor the multiple mechanisms that ultimately contribute to the pathogenesis of SUI. In the past, most SUI animal studies took advantage of rodents or rabbits. Recent models present for instance transgenic rats developing severe obesity, to investigate metabolic interrelations between the disorder and incontinence. Using recombinant gene technologies, such as transgenic, gene knock-out or CRISPR-Cas animals may narrow the gap between the model and the clinical situation of patients. However, to investigate surgical regimens or cell therapies to improve or even cure SUI, large animal models such as pig, goat, dog and others provide several advantages. Among them, standard surgical instruments can be employed for minimally invasive transurethral diagnoses and therapies. We, therefore, focus in this review on large animal models of SUI.


2017 ◽  
Vol 28 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Lan Huang ◽  
Fengyan Zhao ◽  
Yi Qu ◽  
Li Zhang ◽  
Yan Wang ◽  
...  

AbstractHypoxic-ischemic encephalopathy (HIE), a serious disease leading to neonatal death, is becoming a key area of pediatric neurological research. Despite remarkable advances in the understanding of HIE, the explicit pathogenesis of HIE is unclear, and well-established treatments are absent. Animal models are usually considered as the first step in the exploration of the underlying disease and in evaluating promising therapeutic interventions. Various animal models of HIE have been developed with distinct characteristics, and it is important to choose an appropriate animal model according to the experimental objectives. Generally, small animal models may be more suitable for exploring the mechanisms of HIE, whereas large animal models are better for translational studies. This review focuses on the features of commonly used HIE animal models with respect to their modeling strategies, merits, and shortcomings, and associated neuropathological changes, providing a comprehensive reference for improving existing animal models and developing new animal models.


Author(s):  
Peter W. Walsh ◽  
Craig S. McLachlan ◽  
Leigh Ladd ◽  
Arie Blitz ◽  
R. Mark Gillies ◽  
...  

Numerous large animal models of chronic cardiac ischemia have been developed to explore either pathological mechanisms and or device interventions in developed heart failure models. Traditionally chronic heart failure in large animal models such as sheep or pigs has been induced by either coronary ligation with or without reperfusion. Coronary ligation is often attempted in the open chest surgical model or more recently in the closed chest animal via angiography [1]. Both techniques can be challenging and also induce high mortality with the risk of myocardial stunning and resultant shock and or lethal arrhythmias. There is also difficulty in developing stable heart failure across cases where infarct sizes can be variable. One strategy to over come this variability has been via rapid ventricular pacing, however inducing heart failure does not induce sustained heart failure in many cases if the pacing is switched off, and additionally pacing does not induce some of the underlying pathology seen in the development of heart failure [1].


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 713
Author(s):  
Shu Fang ◽  
Ditte Gry Ellman ◽  
Ditte Caroline Andersen

To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.


Author(s):  
Amira D. Rghei ◽  
Brenna A. Y. Stevens ◽  
Sylvia P. Thomas ◽  
Jacob G. E. Yates ◽  
Benjamin M. McLeod ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Saidulu Mattapally ◽  
Jianyi Zhang

Introduction: Human induced pluripotent stem cells (hiPSCs) are among one the most significant discoveries in life sciences. As a promising —biological drug for cell therapy, multiple lineages of iPSC-derived cardiac cells have been administered in human clinical trials in multiple important organ systems. The potential immunogenicity of hiPSC-derived cardiac cells continues to be one of the concerns in large animal models. Methods: In the present study, WT hiPSCs were generated by transfecting male human cardiac fibroblasts with Sendai viruses coding for OCT4, SOX2, KLF4, and C-MYC.Then hiPSCs carrying knockout mutations for both HLA Class I and Class II (HLAI/II-KOhiPSC) were generated via CRISPR/Cas9 gene-editing technology (Mattapally et al, 2018). hiPSCs were differentiated into cardiomyocytes (CM) endothelial cells (ECs) and spheroid cultured was performed as previously described (Mattapally et al, 2018). We evaluated spheroid transplantation and its potency for myocardial repair in the Swine. Programmed stimulation was used to determine the arrhythmogenic outcome. Results: To determine the engraftment efficacy of HLAI/II KO compared to WT Spheroid, a swine study was performed. After LAD ligation in swine, 800μm spheroid was injected into the border zone of the left ventricle. After transplantation, cell engraftment was monitored by Q-PCR. At week 4, there was a significant difference between the 2 groups. Animal groups included: MI hearts treated with 500 WT Spheroid injection (MI+WT Spheroid, n=5), MI hearts treated with 500 KO Spheroid injection (n=6), MI only hearts (n=6); the fourth group of animals underwent sham surgery (Sham, n=6). Arrhythmia was studied by programmed electrical stimulations (PES) and conduction velocities measured with electrode mapping, and the engraftment rate by calculation of quantitative polymerase chain reaction measurements of expression of the human Y chromosome. Engraftment of iPSC-CMs was found in both treatment groups; however, a significantly higher engraftment rate was found in KO Spheroid. The spheroid treatment is associated with significant changes in arrhythmogenicity. Conclusion: Our study established the improved graft but associated with arrhythmogenicity.


2012 ◽  
Vol 78 (8) ◽  
pp. 1733-1748 ◽  
Author(s):  
G.P. Adams ◽  
J. Singh ◽  
A.R. Baerwald

Sign in / Sign up

Export Citation Format

Share Document