scholarly journals Influence of industry standard feeding frequencies on behavioral patterns and rumen and fecal bacterial communities in Holstein and Jersey cows

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248147
Author(s):  
Vanessa M. De La Guardia-Hidrogo ◽  
Henry A. Paz

This study aimed to evaluate the effects of feeding frequency on behavioral patterns and on diurnal fermentation and bacteriome profiles of the rumen and feces in Holstein and Jersey cows. Ten Holstein and 10 Jersey cows were offered a TMR (53:47 forage-to-concentrate ratio dry matter basis) for ad libitum consumption and were randomly allocated within breed to one of the following feeding frequencies: (1) TMR delivered 1×/d (at 0600 h) or (2) TMR delivered 2×/d (at 0600 and 1800 h). The experiment lasted for 28 d with the first 14 d for cow adaptation to the Calan gates and the next 14 d for data collection. On d 23 and 24, an observer manually recorded the time budget (time spent lying, eating, drinking, standing, and milking), rumination activity, and number of visits to the feeding gate from each animal. On d 28, 5 concomitant collections of rumen and fecal samples were performed at intervals of 6 h via esophageal tubing and fecal grab, respectively. The bacteriome composition from these samples was determined through sequencing of the V4 region of the 16S rRNA gene. Feeding frequency did not affect behavioral patterns; however, Holstein cows spend more time lying (15.4 vs. 13.5 ± 0.8 h) and ruminating (401 vs. 331 ± 17.5 min) than Jersey cows. Fermentation profiles were similar by feeding frequency in both breeds. While no major diurnal fluctuations were observed in the fecal bacterial community from both breeds, diurnal fluctuations were identified in the rumen bacterial community from Holstein cows which appeared to follow pH responses. Overall, the bacterial community composition was not differentiated by industry standard feeding frequencies but was differentiated by breed and sample type.

Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 498 ◽  
Author(s):  
Samantha J. Noel ◽  
Dana W. Olijhoek ◽  
Farran Mclean ◽  
Peter Løvendahl ◽  
Peter Lund ◽  
...  

Identifying factors that influence the composition of the microbial population in the digestive system of dairy cattle will be key in regulating these populations to reduce greenhouse gas emissions. In this study, we analyzed rumen and fecal samples from five high residual feed intake (RFI) Holstein cows, five low RFI Holstein cows, five high RFI Jersey cows and five low RFI Jersey cows, fed either a high-concentrate diet (expected to reduce methane emission) or a high-forage diet. Bacterial communities from both the rumen and feces were profiled using Illumina sequencing on the 16S rRNA gene. Rumen archaeal communities were profiled using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) targeting the mcrA gene. The rumen methanogen community was influenced by breed but not by diet or RFI. The rumen bacterial community was influenced by breed and diet but not by RFI. The fecal bacterial community was influenced by individual animal variation and, to a lesser extent, by breed and diet but not by RFI. Only the bacterial community correlated with methane production. Community differences seen in the rumen were reduced or absent in feces, except in the case of animal-to-animal variation, where differences were more pronounced. The two cattle breeds had different levels of response to the dietary intervention; therefore, it may be appropriate to individually tailor methane reduction strategies to each cattle breed.


2021 ◽  
Vol 11 (3) ◽  
pp. 918
Author(s):  
Lingzi Mo ◽  
Augusto Zanella ◽  
Xiaohua Chen ◽  
Bin Peng ◽  
Jiahui Lin ◽  
...  

Continuing nitrogen (N) deposition has a wide-ranging impact on terrestrial ecosystems. To test the hypothesis that, under N deposition, bacterial communities could suffer a negative impact, and in a relatively short timeframe, an experiment was carried out for a year in an urban area featuring a cover of Bermuda grass (Cynodon dactylon) and simulating environmental N deposition. NH4NO3 was added as external N source, with four dosages (N0 = 0 kg N ha−2 y−1, N1 = 50 kg N ha−2 y−1, N2 = 100 kg N ha−2 y−1, N3 = 150 kg N ha−2 y−1). We analyzed the bacterial community composition after soil DNA extraction through the pyrosequencing of the 16S rRNA gene amplicons. N deposition resulted in soil bacterial community changes at a clear dosage-dependent rate. Soil bacterial diversity and evenness showed a clear trend of time-dependent decline under repeated N application. Ammonium nitrogen enrichment, either directly or in relation to pH decrease, resulted in the main environmental factor related to the shift of taxa proportions within the urban green space soil bacterial community and qualified as a putative important driver of bacterial diversity abatement. Such an impact on soil life induced by N deposition may pose a serious threat to urban soil ecosystem stability and surrounding areas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matteo Daghio ◽  
Francesca Ciucci ◽  
Arianna Buccioni ◽  
Alice Cappucci ◽  
Laura Casarosa ◽  
...  

The use of rustic cattle is desirable to face challenges brought on by climate change. Maremmana (MA) and Aubrac (AU) are rustic cattle breeds that can be successfully used for sustainable production. In this study, correlations between two rearing systems (feedlot and grazing) and the rumen microbiota, the lipid composition of rumen liquor (RL), and the growth performance of MA and AU steers were investigated. Bacterial community composition was characterized by high-throughput sequencing of 16S rRNA gene amplicons, and the RL lipid composition was determined by measuring fatty acid (FA) and the dimethyl acetal profiles. The main factor influencing bacterial community composition was the cattle breed. Some bacterial groups were positively correlated to average daily weight gain for the two breeds (i.e., Rikenellaceae RC9 gut group, Fibrobacter and Succiniclasticum in the rumen of MA steers, and Succinivibrionaceae UCG-002 in the rumen of AU steers); despite this, animal performance appeared to be influenced by short chain FAs production pathways and by the presence of H2 sinks that divert the H2 to processes alternative to the methanogenesis.


2019 ◽  
Vol 8 (1) ◽  
pp. 30 ◽  
Author(s):  
Susanne Jacksch ◽  
Dominik Kaiser ◽  
Severin Weis ◽  
Mirko Weide ◽  
Stefan Ratering ◽  
...  

Modern, mainly sustainability-driven trends, such as low-temperature washing or bleach-free liquid detergents, facilitate microbial survival of the laundry processes. Favourable growth conditions like humidity, warmth and sufficient nutrients also contribute to microbial colonization of washing machines. Such colonization might lead to negatively perceived staining, corrosion of washing machine parts and surfaces, as well as machine and laundry malodour. In this study, we characterized the bacterial community of 13 domestic washing machines at four different sampling sites (detergent drawer, door seal, sump and fibres collected from the washing solution) using 16S rRNA gene pyrosequencing and statistically analysed associations with environmental and user-dependent factors. Across 50 investigated samples, the bacterial community turned out to be significantly site-dependent with the highest alpha diversity found inside the detergent drawer, followed by sump, textile fibres isolated from the washing solution, and door seal. Surprisingly, out of all other investigated factors only the monthly number of wash cycles at temperatures ≥ 60 °C showed a significant influence on the community structure. A higher number of hot wash cycles per month increased microbial diversity, especially inside the detergent drawer. Potential reasons and the hygienic relevance of this finding need to be assessed in future studies.


2018 ◽  
Vol 64 (12) ◽  
pp. 954-967 ◽  
Author(s):  
Liqiang Zhong ◽  
Daming Li ◽  
Minghua Wang ◽  
Xiaohui Chen ◽  
Wenji Bian ◽  
...  

The changes in the bacterial community composition in a channel catfish nursery pond with a cage–pond integration system were investigated by sequencing of the 16S rRNA gene through Illumina MiSeq sequencing platforms. A total of 1 362 877 sequences and 1440 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in the cage and pond groups were similar, including Actinobacteria, Cyanobacteria, Proteobacteria, and Bacteroidetes, although a significant difference was detected between them by ANOSIM (P < 0.05). Temporal changes and site variation were significantly related to the variation of the bacterial community. A comprehensive analysis of the diversity and evenness of the bacterial 16S rRNA gene, redundancy analysis (RDA), and partial Mantel test showed that the bacterial community composition in a cage–pond integration system was shaped more by temporal variation than by site variation. RDA also indicated that water temperature, total dissolved solids, and Secchi depth had the largest impact on bacterial populations.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Siwen Deng ◽  
Heidi M.-L. Wipf ◽  
Grady Pierroz ◽  
Ted K. Raab ◽  
Rajnish Khanna ◽  
...  

AbstractDespite growing interest in utilizing microbial-based methods for improving crop growth, much work still remains in elucidating how beneficial plant-microbe associations are established, and what role soil amendments play in shaping these interactions. Here, we describe a set of experiments that test the effect of a commercially available soil amendment, VESTA, on the soil and strawberry (Fragaria x ananassa Monterey) root bacterial microbiome. The bacterial communities of the soil, rhizosphere, and root from amendment-treated and untreated fields were profiled at four time points across the strawberry growing season using 16S rRNA gene amplicon sequencing on the Illumina MiSeq platform. In all sample types, bacterial community composition and relative abundance were significantly altered with amendment application. Importantly, time point effects on composition are more pronounced in the root and rhizosphere, suggesting an interaction between plant development and treatment effect. Surprisingly, there was slight overlap between the taxa within the amendment and those enriched in plant and soil following treatment, suggesting that VESTA may act to rewire existing networks of organisms through an, as of yet, uncharacterized mechanism. These findings demonstrate that a commercial microbial soil amendment can impact the bacterial community structure of both roots and the surrounding environment.


2005 ◽  
Vol 71 (7) ◽  
pp. 3624-3632 ◽  
Author(s):  
Alexander Loy ◽  
Wolfgang Beisker ◽  
Harald Meier

ABSTRACT Bacterial growth occurs in noncarbonated natural mineral waters a few days after filling and storage at room temperature, a phenomenon known for more than 40 years. Using the full-cycle rRNA approach, we monitored the development of the planktonic bacterial community in a noncarbonated natural mineral water after bottling. Seven 16S rRNA gene libraries, comprising 108 clones in total, were constructed from water samples taken at various days after bottling and from two different bottle sizes. Sequence analyses identified 11 operational taxonomic units (OTUs), all but one affiliated with the betaproteobacterial order Burkholderiales (6 OTUs) or the class Alphaproteobacteria (4 OTUs). Fluorescence in situ hybridization (FISH) was applied in combination with DAPI (4′,6′-diamidino-2-phenylindole) staining, viability staining, and microscopic counting to quantitatively monitor changes in bacterial community composition. A growth curve similar to that of a bacterium grown in a batch culture was recorded. In contrast to the current perception that Gammaproteobacteria are the most important bacterial components of natural mineral water in bottles, Betaproteobacteria dominated the growing bacterial community and accounted for 80 to 98% of all bacteria detected by FISH in the late-exponential and stationary-growth phases. Using previously published and newly designed genus-specific probes, members of the betaproteobacterial genera Hydrogenophaga, Aquabacterium, and Polaromonas were found to constitute a significant proportion of the bacterial flora (21 to 86% of all bacteria detected by FISH). For the first time, key genera responsible for bacterial growth in a natural mineral water were identified by applying molecular cultivation-independent techniques.


2011 ◽  
Vol 77 (14) ◽  
pp. 4924-4930 ◽  
Author(s):  
Max Kolton ◽  
Yael Meller Harel ◽  
Zohar Pasternak ◽  
Ellen R. Graber ◽  
Yigal Elad ◽  
...  

ABSTRACTAdding biochar to soil has environmental and agricultural potential due to its long-term carbon sequestration capacity and its ability to improve crop productivity. Recent studies have demonstrated that soil-applied biochar promotes the systemic resistance of plants to several prominent foliar pathogens. One potential mechanism for this phenomenon is root-associated microbial elicitors whose presence is somehow augmented in the biochar-amended soils. The objective of this study was to assess the effect of biochar amendment on the root-associated bacterial community composition of mature sweet pepper (Capsicum annuumL.) plants. Molecular fingerprinting (denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism) of 16S rRNA gene fragments showed a clear differentiation between the root-associated bacterial community structures of biochar-amended and control plants. The pyrosequencing of 16S rRNA amplicons from the rhizoplane of both treatments generated a total of 20,142 sequences, 92 to 95% of which were affiliated with theProteobacteria,Bacteroidetes,Actinobacteria, andFirmicutesphyla. The relative abundance of members of theBacteroidetesphylum increased from 12 to 30% as a result of biochar amendment, while that of theProteobacteriadecreased from 71 to 47%. TheBacteroidetes-affiliatedFlavobacteriumwas the strongest biochar-induced genus. The relative abundance of this group increased from 4.2% of total root-associated operational taxonomic units (OTUs) in control samples to 19.6% in biochar-amended samples. Additional biochar-induced genera included chitin and cellulose degraders (ChitinophagaandCellvibrio, respectively) and aromatic compound degraders (HydrogenophagaandDechloromonas). We hypothesize that these biochar-augmented genera may be at least partially responsible for the beneficial effect of biochar amendment on plant growth and viability.


Sign in / Sign up

Export Citation Format

Share Document