scholarly journals Myocardial extracellular volume quantification by computed tomography predicts outcomes in patients with severe aortic stenosis

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248306
Author(s):  
Yoav Hammer ◽  
Yeela Talmor-Barkan ◽  
Aryeh Abelow ◽  
Katia Orvin ◽  
Yaron Aviv ◽  
...  

Background The extent of myocardial fibrosis in patients with severe aortic stenosis might have an important prognostic value. Non-invasive imaging to quantify myocardial fibrosis by measuring extracellular volume fraction might have an important clinical utility prior to aortic valve intervention. Methods Seventy-five consecutive patients with severe aortic stenosis, and 19 normal subjects were prospectively recruited and underwent pre- and post-contrast computed tomography for estimating myocardial extracellular volume fraction. Serum level of galectin-3 was measured and 2-dimensional echocardiography was performed to characterize the extent of cardiac damage using a recently published aortic stenosis staging classification. Results Extracellular volume fraction was higher in patients with aortic stenosis compared to normal subjects (40.0±11% vs. 21.6±5.6%; respectively, p<0.001). In patients with aortic stenosis, extracellular volume fraction correlated with markers of left ventricular decompensation including New York Heart Association functional class, left atrial volume, staging classification of aortic stenosis and lower left ventricular ejection fraction. Out of 75 patients in the AS group, 49 underwent TAVI, 6 surgical AVR, 2 balloon valvuloplasty, and 18 did not undergo any type of intervention. At 12-months after aortic valve intervention, extracellular volume fraction predicted the combined outcomes of stroke and hospitalization for heart failure with an area under the curve of 0.77 (95% confidence interval: 0.65–0.88). A trend for correlation between serum galectin-3 and extracellular volume was noted. Conclusion In patients with severe aortic stenosis undergoing computed tomography before aortic valve intervention, quantification of extracellular volume fraction correlated with functional status and markers of left ventricular decompensation, and predicted the 12-months composite adverse clinical outcomes. Implementation of this novel technique might aid in the risk stratification process before aortic valve interventions.

2020 ◽  
Vol 10 (7) ◽  
pp. 1534-1539
Author(s):  
Jiajun Xie ◽  
Xuhua Jian ◽  
Qiyang Lu ◽  
Jinxiu Meng ◽  
Yu-Hsiang Juan ◽  
...  

Purpose: To evaluate myocardial diffuse fibrosis in severe aortic stenosis (SAS) with cardiac magnetic resonance imaging (MRI) T1 mapping technique. Methods: Twenty-seven SAS patients and 15 controls were enrolled and performed cardiac MRI. Left ventricular (LV) structure, function and T1-derived parameters were measured to compare between SAS group and the controls. Correlation between T1-derived parameters and the extent of histologic fibrosis was performed in 15 patients who underwent aortic valve replacement surgery and myocardial biopsy. Results: The SAS group had LV remodeling with ventricular dilatation, hypertrophy, and contractile dysfunction. The native T1 (1336.2±62.5 ms vs. 1277.6±40.7 ms, p = 0.002) and extracellular volume fraction (ECV%) (26.7±2.2% vs. 24.9±2.2%, p = 0.018) were elevated in the SAS in comparison to the controls. Only ECV and λ correlated with the extent of fibrosis as measured by histology. Conclusion: Cardiac MRI with T1 mapping provides a noninvasive approach to evaluate LV myocardial diffuse fibrosis in SAS.


Author(s):  
Masataka Suzuki ◽  
Takayoshi Toba ◽  
Yu Izawa ◽  
Hiroshi Fujita ◽  
Keisuke Miwa ◽  
...  

Background Myocardial extracellular volume fraction (ECV), measured by cardiac magnetic resonance imaging, is a useful prognostic marker for patients who have undergone aortic valve replacement (AVR) for aortic stenosis. However, the prognostic significance of ECV measurements based on computed tomography (CT) is unclear. This study evaluated the association between ECV measured with dual‐energy CT and clinical outcomes in patients with aortic stenosis who underwent transcatheter or surgical AVR. Methods and Results We retrospectively enrolled 95 consecutive patients (age, 84.0±5.0 years; 75% women) with severe aortic stenosis who underwent preprocedural CT for transcatheter AVR planning. ECV was measured using iodine density images obtained by delayed enhancement dual‐energy CT. The primary end point was a composite outcome of all‐cause death and hospitalization for heart failure after AVR. The mean ECV measured with CT was 28.1±3.8%. During a median follow‐up of 2.6 years, 22 composite outcomes were observed, including 15 all‐cause deaths and 11 hospitalizations for heart failure. In Kaplan‐Meier analysis, the high ECV group (≥27.8% [median value]) had significantly higher rates of composite outcomes than the low ECV group (<27.8%) (log‐rank test, P =0.012). ECV was the only independent predictor of adverse outcomes on multivariable Cox regression analysis (hazards ratio, 1.25; 95% CI, 1.10‒1.41; P <0.001). Conclusions Myocardial ECV measured with dual‐energy CT in patients who underwent aortic valve intervention was an independent predictor of adverse outcomes after AVR.


Author(s):  
Donghee Han ◽  
Balaji Tamarappoo ◽  
Eyal Klein ◽  
Jeffrey Tyler ◽  
Tarun Chakravarty ◽  
...  

Abstract Aims  Recovery of left ventricular ejection fraction (LVEF) after aortic valve replacement has prognostic importance in patients with aortic stenosis (AS). The mechanism by which myocardial fibrosis impacts LVEF recovery in AS is not well characterized. We sought to evaluate the predictive value of extracellular volume fraction (ECV) quantified by cardiac CT angiography (CTA) for LVEF recovery in patients with AS after transcatheter aortic valve replacement (TAVR). Methods and results  In 109 pre-TAVR patients with LVEF &lt;50% at baseline echocardiography, CTA-derived ECV was calculated as the ratio of change in CT attenuation of the myocardium and the left ventricular (LV) blood pool before and after contrast administration. Early LVEF recovery was defined as an absolute increase of ≥10% in LVEF measured by post-TAVR follow-up echocardiography within 6 months of the procedure. Early LVEF recovery was observed in 39 (36%) patients. The absolute increase in LVEF was 17.6 ± 8.8% in the LVEF recovery group and 0.9 ± 5.9% in the no LVEF recovery group (P &lt; 0.001). ECV was significantly lower in patients with LVEF recovery compared with those without LVEF recovery (29.4 ± 6.1% vs. 33.2 ± 7.7%, respectively, P = 0.009). In multivariable analysis, mean pressure gradient across the aortic valve [odds ratio (OR): 1.07, 95% confidence interval (CI): 1.03–1.11, P: 0.001], LV end-diastolic volume (OR: 0.99, 95% CI: 0.98–0.99, P: 0.035), and ECV (OR: 0.92, 95% CI: 0.86–0.99, P: 0.018) were independent predictors of early LVEF recovery. Conclusion  Increased myocardial ECV on CTA is associated with impaired LVEF recovery post-TAVR in severe AS patients with impaired LV systolic function.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
R Everett ◽  
T Treibel ◽  
M Fukui ◽  
H Lee ◽  
M Rigolli ◽  
...  

Abstract Background The development of myocardial fibrosis is a key mechanism in the transition from compensated hypertrophy to heart failure in aortic stenosis (AS). Focal and diffuse fibrosis can be quantified using cardiac magnetic resonance (CMR) imaging late gadolinium-enhanced (LGE) and T1 mapping techniques. Purpose To assess T1 mapping measures of fibrosis in patients with severe AS referred for aortic valve intervention, and determine their associations with clinical characteristics, disease severity and long-term clinical outcome. Methods In this international prospective cohort study, patients with severe AS underwent contrast enhanced CMR with T1 mapping and LGE prior to aortic valve intervention. Image analysis was performed by a single core laboratory and the extracellular volume fraction [ECV%] calculated from T1 mapping images. The presence of LGE was determined visually and quantified using the full-width-at-half-maximum technique. Results Four-hundred and forty patients (70±10 years, 59% male) from ten international centres were enrolled. Aortic valve intervention was performed 15 [4 to 58] days following CMR. Within a follow-up of 3.8 [2.8 to 4.6] years, 52 patients died. ECV% (mean 27.7±3.6%) correlated with increasing age, Society of Thoracic Surgeons Predicted Risk of Mortality score, known coronary artery disease, lower peak aortic-jet velocity, larger left ventricular (LV) mass, lower LV ejection fraction, and presence of LGE (P<0.05 for all). Following adjustment for all demographic and clinical variables, ECV% remained associated with age (P=0.028), LV ejection fraction (P<0.001) and presence of LGE (P=0.035). Univariable predictors of all-cause mortality included age, male sex, impaired LV ejection fraction and presence of LGE (all P<0.05). A progressive increase in all-cause mortality was seen across tertiles of ECV% (17.3, 31.6 and 52.7 deaths per 1000 patient-years; log-rank test, P=0.009). ECV% was independently associated with all-cause mortality following adjustment for age, sex, impaired LV ejection fraction and presence of LGE (HR per unit increase in ECV: 1.10, 95%, (1.02–1.19), P=0.013). ECV440 abstract iamge Conclusion In patients with severe aortic stenosis scheduled for aortic valve intervention, extracellular volume-based T1 mapping correlates with LV decompensation. ECV% is a strong independent predictor of late all-cause mortality and is a potential therapeutic target.


Author(s):  
Gabriela Liberato ◽  
Juliana Bello ◽  
Rodrigo D Melo ◽  
Antonildes N Assunção Jr ◽  
Ariane B Pacheco ◽  
...  

Open Heart ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. e001443
Author(s):  
Richard Paul Steeds ◽  
David Messika-Zeitoun ◽  
Jeetendra Thambyrajah ◽  
Antonio Serra ◽  
Eberhard Schulz ◽  
...  

AimsThere is an increasing awareness of gender-related differences in patients with severe aortic stenosis and their outcomes after surgical aortic valve replacement (SAVR) and transcatheter aortic valve implantation (TAVI).MethodsData from the IMPULSE registry were analysed. Patients with severe aortic stenosis (AS) were enrolled between March 2015 and April 2017 and stratified by gender. A subgroup analysis was performed to assess the impact of age.ResultsOverall, 2171 patients were enrolled, and 48.0% were female. Women were characterised by a higher rate of renal impairment (31.7 vs 23.3%; p<0.001), were at higher surgical risk (EuroSCORE II: 4.5 vs 3.6%; p=0.001) and more often in a critical preoperative state (7.0vs 4.2%; p=0.003). Men had an increased rate of previous cardiac surgery (9.4 vs 4.7%; p<0.001) and a reduced left ventricular ejection fraction (4.9 vs 1.3%; p<0.001). Concomitant mitral and tricuspid valve disease was substantially more common among women. Symptoms were highly prevalent in both women and men (83.6 vs 77.3%; p<0.001). AVR was planned in 1379 cases. Women were more frequently scheduled to undergo TAVI (49.3 vs 41.0%; p<0.001) and less frequently for SAVR (20.3 vs 27.5%; p<0.001).ConclusionsThe present data show that female patients with severe AS have a distinct patient profile and are managed in a different way to males. Gender-based differences in the management of patients with severe AS need to be taken into account more systematically to improve outcomes, especially for women.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Haotian Gu ◽  
Rong Bing ◽  
Calvin Chin ◽  
Lingyun Fang ◽  
Audrey C. White ◽  
...  

Abstract Background First-phase ejection fraction (EF1; the ejection fraction measured during active systole up to the time of maximal aortic flow) measured by transthoracic echocardiography (TTE) is a powerful predictor of outcomes in patients with aortic stenosis. We aimed to assess whether cardiovascular magnetic resonance (CMR) might provide more precise measurements of EF1 than TTE and to examine the correlation of CMR EF1 with measures of fibrosis. Methods In 141 patients with at least mild aortic stenosis, we measured CMR EF1 from a short-axis 3D stack and compared its variability with TTE EF1, and its associations with myocardial fibrosis and clinical outcome (aortic valve replacement (AVR) or death). Results Intra- and inter-observer variation of CMR EF1 (standard deviations of differences within and between observers of 2.3% and 2.5% units respectively) was approximately 50% that of TTE EF1. CMR EF1 was strongly predictive of AVR or death. On multivariable Cox proportional hazards analysis, the hazard ratio for CMR EF1 was 0.93 (95% confidence interval 0.89–0.97, p = 0.001) per % change in EF1 and, apart from aortic valve gradient, CMR EF1 was the only imaging or biochemical measure independently predictive of outcome. Indexed extracellular volume was associated with AVR or death, but not after adjusting for EF1. Conclusions EF1 is a simple robust marker of early left ventricular impairment that can be precisely measured by CMR and predicts outcome in aortic stenosis. Its measurement by CMR is more reproducible than that by TTE and may facilitate left ventricular structure–function analysis.


2007 ◽  
Vol 293 (4) ◽  
pp. H2377-H2384 ◽  
Author(s):  
Yi Jiang ◽  
Julius M. Guccione ◽  
Mark B. Ratcliffe ◽  
Edward W. Hsu

The orientation of MRI-measured diffusion tensor in the myocardium has been directly correlated to the tissue fiber direction and widely characterized. However, the scalar anisotropy indexes have mostly been assumed to be uniform throughout the myocardial wall. The present study examines the fractional anisotropy (FA) as a function of transmural depth and circumferential and longitudinal locations in the normal sheep cardiac left ventricle. Results indicate that FA remains relatively constant from the epicardium to the midwall and then decreases (25.7%) steadily toward the endocardium. The decrease of FA corresponds to 7.9% and 12.9% increases in the secondary and tertiary diffusion tensor diffusivities, respectively. The transmural location of the FA transition coincides with the location where myocardial fibers run exactly circumferentially. There is also a significant difference in the midwall-endocardium FA slope between the septum and the posterior or lateral left ventricular free wall. These findings are consistent with the cellular microstructure from histological studies of the myocardium and suggest a role for MR diffusion tensor imaging in characterization of not only fiber orientation but, also, other tissue parameters, such as the extracellular volume fraction.


Sign in / Sign up

Export Citation Format

Share Document