scholarly journals Reference intervals and values for fecal cortisol, aldosterone, and the ratio of cortisol to dehydroepiandrosterone metabolites in four species of cetaceans

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0250331
Author(s):  
Lance J. Miller ◽  
Lisa K. Lauderdale ◽  
Michael T. Walsh ◽  
Jocelyn L. Bryant ◽  
Kevin A. Mitchell ◽  
...  

The goal of the current study was to create reference intervals and values for several common and one potential novel physiological indicators of animal welfare for four species of cetaceans. The subjects included 189 bottlenose dolphins (Tursiops truncatus), 27 Indo-Pacific bottlenose dolphins (Tursiops aduncus), eight Pacific white-sided dolphins (Lagenorhynchus obliquidens), and 13 beluga whales (Delphinapterus leucas) at Alliance of Marine Mammal Parks and Aquariums and/or Association of Zoos and Aquariums accredited facilities. During two sampling time periods between July and November of 2018 and between January and April of 2019, fecal samples were collected weekly for five weeks from all animals. Samples were processed and analyzed using enzyme immunoassay for fecal cortisol, aldosterone, and dehydroepiandrosterone (DHEA) metabolites. Linear mixed models were used to examine demographic and time factors impacting hormone metabolite concentrations. Age, sex, and time of year were all significant predictors for some of the models (p < 0.01). An iOS mobile application ZooPhysioTrak was created for easy access to species-specific reference intervals and values accounting for significant predictors. For facilities without access to this application, additional reference intervals and values were constructed without accounting for significant predictors. Information gained from this study and the use of the application can provide reference intervals and values to make informed management decisions for cetaceans in zoological facilities.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255506
Author(s):  
Lisa K. Lauderdale ◽  
Jill D. Mellen ◽  
Michael T. Walsh ◽  
Douglas A. Granger ◽  
Lance J. Miller

Cetaceans are long-lived, social species that are valued as ambassadors inspiring the public to engage in conservation action. Under professional care, they are critical partners with the scientific community to understanding the biology, behavior, physiology, health, and welfare requirements of this taxonomic group. The Cetacean Welfare Study was a highly collaborative research effort among zoos and aquariums accredited by the Alliance for Marine Mammal Parks and Aquariums and/or the Association of Zoos & Aquariums that provided important empirical and comparative information on the care and management of cetaceans. The goal was to identify factors that were related to the welfare of bottlenose dolphins and to develop reference intervals and values for common and novel indicators of health and welfare for common bottlenose dolphins (Tursiops truncatus), Indo-Pacific bottlenose dolphins (Tursiops aduncus), beluga whales (Delphinapterus leucas), and Pacific white-sided dolphins (Lagenorhynchus obliquidens). Data were collected from cetaceans at 43 accredited zoos and aquariums in seven countries in 2018 and 2019. This overview presents a summary of findings from the initial research articles that resulted from the study titled “Towards understanding the welfare of cetaceans in zoos and aquariums.” With multiple related objectives, animal-based metrics were used to advance frameworks of clinical care and target key conditions that were associated with good welfare of cetaceans in zoo and aquarium environments. As a result of this collaboration, species-specific reference intervals and values for blood variables and fecal hormone metabolites were developed and are freely available in an iOS application called ZooPhysioTrak. The results suggested that environmental enrichment programs and social management factors were more strongly related to behaviors likely indicative of positive welfare than habitat characteristics for common and Indo-Pacific bottlenose dolphins. These findings can be widely applied to optimize care and future science-based welfare practice.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0250332
Author(s):  
Lisa K. Lauderdale ◽  
Michael T. Walsh ◽  
Kevin A. Mitchell ◽  
Douglas A. Granger ◽  
Jill D. Mellen ◽  
...  

This study reports comprehensive clinical pathology data for hematology, serum, and plasma biochemistry reference intervals for 174 apparently healthy common bottlenose dolphins (Tursiops truncatus) and reference values for 27 Indo-Pacific bottlenose dolphins (Tursiops aduncus), 13 beluga whales (Delphinapterus leucas), and 6 Pacific white-sided dolphins (Lagenorhynchus obliquidens) in zoos and aquariums accredited by the Alliance for Marine Mammal Parks and Aquariums and the Association of Zoos & Aquariums. Blood samples were collected as part of a larger study titled “Towards understanding the welfare of cetaceans in zoos and aquariums” (colloquially called the Cetacean Welfare Study). Two blood samples were collected following a standardized protocol, and two veterinarian examinations were conducted approximately six months apart between July to November 2018 and January to April 2019. Least square means, standard deviations, and 95% confidence intervals were calculated for hematology, serum, and plasma biochemical variables. Comparisons by age, gender, and month revealed statistically significant differences (p < 0.01) for several variables. Reference intervals and values were generated for samples tested at two laboratories for up to 56 hematologic, serum, and plasma biochemical variables. To apply these data, ZooPhysioTrak, an iOS mobile software application, was developed to provide a new resource for cetacean management. ZooPhysioTrak provides species-specific reference intervals and values based on user inputs of individual demographic and sample information. These data provide a baseline from which to compare hematological, serum, and plasma biochemical values in cetaceans in zoos and aquariums.


1990 ◽  
Vol 68 (2) ◽  
pp. 359-367 ◽  
Author(s):  
D. J. St. Aubin ◽  
T. G. Smith ◽  
J. R. Geraci

Epidermal morphology and proliferation were examined in beluga whales during three phases of their annual cycle: spring migration from oceanic wintering grounds, summer occupation of estuaries in Hudson Bay, and return migration in fall. Incursion into relatively warm brackish water was associated with decreased thickness of the stratum externum and sloughing of a superficial layer of degenerative epidermal cells, changes that resulted in the loss of a distinctive yellow hue apparent over the dorsal body surface of whales examined during spring migration. Proliferation rate, determined by incorporation of tritiated thymidine in germinal cells, averaged 13.8–16.6% in all three seasons, but exceeded 20% in 7 of 16 whales examined in the estuaries; similarly high values were not observed during spring migration, and in only one of nine animals sampled in the fall. Average proliferation rate in 13 captive belugas was 14.2–16.6%, two to three times higher than any reported value for other cetaceans or terrestrial mammals. Epidermal turnover time in a single whale studied over a 6-week period was estimated to be 70–75 days, comparable to that in bottlenose dolphins, but indicating a much higher rate of cell migration. In estuaries, elevated temperature and low salinity are presumably responsible for accelerating turnover of superficial cells, and may contribute to elevated proliferation rates by stimulating blood flow to the germinal layer.


Author(s):  
O E Okosieme ◽  
Medha Agrawal ◽  
Danyal Usman ◽  
Carol Evans

Background: Gestational TSH and FT4 reference intervals may differ according to assay method but the extent of variation is unclear and has not been systematically evaluated. We conducted a systematic review of published studies on TSH and FT4 reference intervals in pregnancy. Our aim was to quantify method-related differences in gestation reference intervals, across four commonly used assay methods, Abbott, Beckman, Roche, and Siemens. Methods: We searched the literature for relevant studies, published between January 2000 and December 2020, in healthy pregnant women without thyroid antibodies or disease. For each study, we extracted trimester-specific reference intervals (2.5–97.5 percentiles) for TSH and FT4 as well as the manufacturer provided reference interval for the corresponding non-pregnant population. Results: TSH reference intervals showed a wide range of study-to-study differences with upper limits ranging from 2.33 to 8.30 mU/L. FT4 lower limits ranged from 4.40–13.93 pmol/L, with consistently lower reference intervals observed with the Beckman method. Differences between non-pregnant and first trimester reference intervals were highly variable, and for most studies the TSH upper limit in the first trimester could not be predicted or extrapolated from non-pregnant values. Conclusions: Our study confirms significant intra and inter-method disparities in gestational thyroid hormone reference intervals. The relationship between pregnant and non-pregnant values is inconsistent and does not support the existing practice in some laboratories of extrapolating gestation references from non-pregnant values. Laboratories should invest in deriving method-specific gestation reference intervals for their population.


2021 ◽  
Author(s):  
K Aaron Geno ◽  
Matthew S Reed ◽  
Mark A Cervinski ◽  
Robert D Nerenz

Abstract Introduction Automated free thyroxine (FT4) immunoassays are widely available, but professional guidelines discourage their use in pregnant women due to theoretical under-recoveries attributed to increased thyroid hormone binding capacity and instead advocate the use of total T4 (TT4) or free thyroxine index (FTI). The impact of this recommendation on the classification of thyroid status in apparently euthyroid pregnant patients was evaluated. Methods After excluding specimens with thyroid autoantibody concentrations above reference limits, thyroid-stimulating hormone (TSH), FT4, TT4, and T-uptake were measured on the Roche Cobas® platform in remnant clinical specimens from at least 147 nonpregnant women of childbearing age and pregnant women at each trimester. Split-sample comparisons of FT4 as measured by the Cobas and equilibrium dialysis were performed. Results FT4 decreased with advancing gestational age by both immunoassay and equilibrium dialysis. TSH declined during the first trimester, remained constant in the second, and increased throughout the third, peaking just before delivery. Interpretation of TT4 concentrations using 1.5-times the nonpregnant reference interval classified 13.6% of first trimester specimens below the lower reference limit despite TSH concentrations within trimester-specific reference intervals. Five FTI results from 480 pregnant individuals (about 1.0%) fell outside the manufacturer’s reference interval. Conclusions Indirect FT4 immunoassay results interpreted in the context of trimester-specific reference intervals provide a practical and viable alternative to TT4 or FTI. Declining FT4 and increasing TSH concentrations near term suggest that declining FT4 is not an analytical artifact but represents a true physiological change in preparation for labor and delivery.


Sign in / Sign up

Export Citation Format

Share Document