scholarly journals Caliper navigation for craniotomy planning of convexity targets

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251023
Author(s):  
Max Jägersberg ◽  
Michael Kosterhon ◽  
Florian Ringel

Introduction A technique to localize a radiological target on the head convexity fast and with acceptable precision is sufficient for surgeries of superficial intracranial lesions, and of help in the setting of emergency surgery, computer navigation breakdown, limited resources and education. We present a caliper technique based on fundamental geometry, with inexpensive and globally available tools (conventional CT or MRI image viewer, calculator, caliper). Methods The distances of the radiological target from two landmarks (nasion and porus acusticus externus) are assessed with an image viewer and Pythagoras’ theorem. The two distances are then marked around the landmarks onto the head of the patient with help of a caliper. The intersection defines the target. We tested the technique in a saw bone skull model and afterwards in the operating room. Convexity targets were localized with the caliper navigation technique and then with computer navigation as ground truth. Results In the saw bone model, the mean offset between the caliper navigated target and the real target was 2.9 ± 2.8 mm, 95% CI (1.6 mm; 4.2 mm). The mean offset between computer navigated target and real target was 1.6 ± 0.9 mm, 95% CI (1.2 mm; 2 mm) (ns). In 15 patients undergoing navigated cranial procedures, 100 targets were assessed in reference to computer navigation. The mean offset of the caliper navigation was 11 ± 5.2 mm, 95% CI (9.9 mm; 12 mm). Conclusion This is a low-tech approach for translation of a radiological target to the patient’s head in short time and with globally available inexpensive tools, with satisfying precision for many procedures.

2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199332
Author(s):  
Xintao Ding ◽  
Boquan Li ◽  
Jinbao Wang

Indoor object detection is a very demanding and important task for robot applications. Object knowledge, such as two-dimensional (2D) shape and depth information, may be helpful for detection. In this article, we focus on region-based convolutional neural network (CNN) detector and propose a geometric property-based Faster R-CNN method (GP-Faster) for indoor object detection. GP-Faster incorporates geometric property in Faster R-CNN to improve the detection performance. In detail, we first use mesh grids that are the intersections of direct and inverse proportion functions to generate appropriate anchors for indoor objects. After the anchors are regressed to the regions of interest produced by a region proposal network (RPN-RoIs), we then use 2D geometric constraints to refine the RPN-RoIs, in which the 2D constraint of every classification is a convex hull region enclosing the width and height coordinates of the ground-truth boxes on the training set. Comparison experiments are implemented on two indoor datasets SUN2012 and NYUv2. Since the depth information is available in NYUv2, we involve depth constraints in GP-Faster and propose 3D geometric property-based Faster R-CNN (DGP-Faster) on NYUv2. The experimental results show that both GP-Faster and DGP-Faster increase the performance of the mean average precision.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Elin Wallstén ◽  
Jan Axelsson ◽  
Joakim Jonsson ◽  
Camilla Thellenberg Karlsson ◽  
Tufve Nyholm ◽  
...  

Abstract Background Attenuation correction of PET/MRI is a remaining problem for whole-body PET/MRI. The statistical decomposition algorithm (SDA) is a probabilistic atlas-based method that calculates synthetic CTs from T2-weighted MRI scans. In this study, we evaluated the application of SDA for attenuation correction of PET images in the pelvic region. Materials and method Twelve patients were retrospectively selected from an ongoing prostate cancer research study. The patients had same-day scans of [11C]acetate PET/MRI and CT. The CT images were non-rigidly registered to the PET/MRI geometry, and PET images were reconstructed with attenuation correction employing CT, SDA-generated CT, and the built-in Dixon sequence-based method of the scanner. The PET images reconstructed using CT-based attenuation correction were used as ground truth. Results The mean whole-image PET uptake error was reduced from − 5.4% for Dixon-PET to − 0.9% for SDA-PET. The prostate standardized uptake value (SUV) quantification error was significantly reduced from − 5.6% for Dixon-PET to − 2.3% for SDA-PET. Conclusion Attenuation correction with SDA improves quantification of PET/MR images in the pelvic region compared to the Dixon-based method.


2021 ◽  
Vol 13 (9) ◽  
pp. 5274
Author(s):  
Xinyang Yu ◽  
Younggu Her ◽  
Xicun Zhu ◽  
Changhe Lu ◽  
Xuefei Li

Development of a high-accuracy method to extract arable land using effective data sources is crucial to detect and monitor arable land dynamics, servicing land protection and sustainable development. In this study, a new arable land extraction index (ALEI) based on spectral analysis was proposed, examined by ground truth data, and then applied to the Hexi Corridor in northwest China. The arable land and its change patterns during 1990–2020 were extracted and identified using 40 Landsat TM/OLI images acquired in 1990, 2000, 2010, and 2020. The results demonstrated that the proposed method can distinguish arable land areas accurately, with the User’s (Producer’s) accuracy and overall accuracy (kappa coefficient) exceeding 0.90 (0.88) and 0.89 (0.87), respectively. The mean relative error calculated using field survey data obtained in 2012 and 2020 was 0.169 and 0.191, respectively, indicating the feasibility of the ALEI method in arable land extracting. The study found that arable land area in the Hexi Corridor was 13217.58 km2 in 2020, significantly increased by 25.33% compared to that in 1990. At 10-year intervals, the arable land experienced different change patterns. The study results indicate that ALEI index is a promising tool used to effectively extract arable land in the arid area.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Chu ◽  
Lu Wang ◽  
Xin Liu ◽  
Chengbin Chu ◽  
Yang Sui

Ambulance location problem is a key issue in Emergency Medical Service (EMS) system, which is to determine where to locate ambulances such that the emergency calls can be responded efficiently. Most related researches focus on deterministic problems or assume that the probability distribution of demand can be estimated. In practice, however, it is difficult to obtain perfect information on probability distribution. This paper investigates the ambulance location problem with partial demand information; i.e., only the mean and covariance matrix of the demands are known. The problem consists of determining base locations and the employment of ambulances, to minimize the total cost. A new distribution-free chance constrained model is proposed. Then two approximated mixed integer programming (MIP) formulations are developed to solve it. Finally, numerical experiments on benchmarks (Nickel et al., 2016) and 120 randomly generated instances are conducted, and computational results show that our proposed two formulations can ensure a high service level in a short time. Specifically, the second formulation takes less cost while guaranteeing an appropriate service level.


2013 ◽  
Vol 16 (02) ◽  
pp. 1350007
Author(s):  
P. Motwani ◽  
A. Jariwala ◽  
N. Valentine

Background: Computer Navigation in Total Knee Replacement (TKR) has completed more than a decade since its inception. From that time, numerous studies have been done to see its effect on the variables of surgery and its outcome. Some studies have shown that it is definitely beneficial while others have negated its superiority over conventional techniques. This is an early outcome study on the results of navigation TKR in terms of alignment and clinical outcome at three years post-operatively. Methods: In the present study, 128 patients who had undergone navigation TKR (128 TKR) between January 2006 and November 2009 were included. The navigation system used was orthoPilot®. Patients were assessed post-operatively at one and three year using knee society score (KSS) and knee function score (KFS). All patients completed one year follow-up and 55 patients completed three year follow-up. From 128 patients, 40 navigated TKR patients operated between November 2007 and 2009 and were compared with 40 patients operated by conventional TKR operated between July 2007 and December 2008. Results: The mean KSS at 1 year post-operatively was 85.60 and at 3 years was 85.87. The mean KFS at 1 year post-operatively was 69.30 and at 3 years was 68.00. There was no statistically significant difference between navigation TKR and conventional TKR in terms of anatomical femoro-tibial alignment, femoral component alignment in coronal and sagittal plane and tibial component alignment in coronal plane. However, there was statistically significant difference between tibial component alignment in sagittal plane (p = 0.000) between both the groups. Conclusion: Computer navigation TKR affords a possibility to place both the femoral and tibial component very precisely without the risk of any greater axis deviation from ideal value. It helps in reducing the outliers in alignment of the limb and that of component and that improves the overall implant survival for a long time post-operatively.


2009 ◽  
Vol 17 (1) ◽  
pp. 51-55 ◽  
Author(s):  
WN Lo ◽  
KW Cheung ◽  
SH Yung ◽  
KH Chiu

Purpose. To assess the accuracy of knee alignment after high tibial osteotomy (HTO) for varus knee deformity using arthroscopy-assisted computer navigation. Methods. Six men and 4 women aged 47 to 53 (mean, 49) years underwent medial open wedge HTO for varus knee deformity and medial unicompartmental osteoarthritis using arthroscopy-assisted computer navigation with fluoroscopy. Patients were followed up for a mean of 23 (range, 11–32) months. Intra- and post-operative leg alignments were compared. Results. The mean postoperative coronal plane alignment was 2.7 (range, 1–4) degree valgus; the mean deviation from intra-operative computer images was one (range, 0.1–1.9) degree; 5 knees had less valgus in the postoperative radiographs than the intra-operative computer images. Conclusion. Despite being more technically demanding, time consuming, and costly, arthroscopy-assisted computer navigation is safe, accurate, and reliable for HTO.


2010 ◽  
Vol 1 (4) ◽  
pp. 17-45
Author(s):  
Antons Rebguns ◽  
Diana F. Spears ◽  
Richard Anderson-Sprecher ◽  
Aleksey Kletsov

This paper presents a novel theoretical framework for swarms of agents. Before deploying a swarm for a task, it is advantageous to predict whether a desired percentage of the swarm will succeed. The authors present a framework that uses a small group of expendable “scout” agents to predict the success probability of the entire swarm, thereby preventing many agent losses. The scouts apply one of two formulas to predict – the standard Bernoulli trials formula or the new Bayesian formula. For experimental evaluation, the framework is applied to simulated agents navigating around obstacles to reach a goal location. Extensive experimental results compare the mean-squared error of the predictions of both formulas with ground truth, under varying circumstances. Results indicate the accuracy and robustness of the Bayesian approach. The framework also yields an intriguing result, namely, that both formulas usually predict better in the presence of (Lennard-Jones) inter-agent forces than when their independence assumptions hold.


1971 ◽  
Vol 43 ◽  
pp. 675-695 ◽  
Author(s):  
A. B. Severny

In an attempt to summarize the present knowledge on the general magnetic field (gmf) of the Sun we pointed out the fine structure and the statistical nature of the gmf as one of its most important properties. The dipole-like behaviour of the mean polar field strengths is combined sometimes (since 1964) with a bias of the S-polarity flux for both poles. Highly uneven distribution of gmf with latitude and longitude, the disappearance of gmf at the South pole for months, and short period, almost synchronous at both poles, variations in the sign of gmf are pointed out. The fluctuations with time of the mean magnetic field of the Sun seen as a star (as well as mf at different latitudes) shows periodicity connected with the rotation of the Sun and very close agreement with the fluctuations of the interplanetary field (sector structure). The effect of faster rotation of N-polarities as compared with S-polarities as well as the bias of mean solar as well as interplanetary S-polarity fields are also pointed out. The possibility of short time-scale (hours) intrinsic changes in the local pattern of gmf is demonstrated.


2019 ◽  
Vol 277 (3) ◽  
pp. 809-817
Author(s):  
Guan-Yuh Ho ◽  
Matthias Leonhard ◽  
Doris-Maria Denk-Linnert ◽  
Berit Schneider-Stickler

Abstract Purpose Persistent unilateral vocal fold paralysis (UFVP) with glottal insufficiency often requires type I medialization thyroplasty (MT). Previous implants cannot be adjusted postoperatively if necessary. The newly developed APrevent® VOIS implant (VOIS) can provide postoperative re-adjustment to avoid revision MT. The objective of this pilot study is to evaluate the VOIS intraoperatively concerning voice improvement, surgical feasibility and device handling. Methods During routine MT, VOIS was applied short time in eight patients before the regular implantation of the Titanium Vocal Fold Medialization Implant (TVFMI™). In all patients, perceptual voice sound analysis using R(oughness)–B(reathiness)–H(oarseness)-scale, measurement of M(aximum)–P(honation)–T(ime) and glottal closure in videolaryngoscopy were performed before and after implanting VOIS/TVFMI™. Acoustic analyses of voice recordings were performed using freeware praat. Surgical feasibility, operative handling and device fitting of VOIS and TVFMI™ were assessed by the surgeon using V(isual)-A(nalog)-S(cale). Data were statistically analyzed with paired t test. Result All patients showed significant improvement of voice sound parameters after VOIS/TVFMI™ implantation. The mean RBH-scale improved from preoperative R = 2.1, B = 2.3, H = 2.5 to R = 0.6, B = 0.3, H = 0.8 after VOIS and R = 0.5, B = 0.3, H = 0.8 after TVFMI™ implantation. The mean MPT increased from preoperative 7.9 to 14.6 s after VOIS and 13.8 s after TVFMI™ implantation. VOIS/TVFMI™ achieved complete glottal closure in 7/8 patients. The satisfaction with intraoperative device fitting and device handling of VOIS was as good as that of TVFMI™. Conclusion The novel APrevent® VOIS implant showed similar intraoperative voice improvement compared to routinely used TVFMI™ without adverse device events and with safe device fitting.


1989 ◽  
Vol 134 ◽  
pp. 106-107
Author(s):  
J. H. Beall ◽  
W. A. Snyder ◽  
K. S. Wood

The Einstein IPC observed the bright (5 mCrab) X-ray emitting BL Lac Object PKS 2155-304 on 1979 November 4th and 5th through 7th and on 1980 May 16th through 18th. A total of 17.4 hours were spent monitoring the source. Changes in intensity of between 10–50% are evident in the data for time scales of days and months. The source was constant to within 10% of the mean intensity on hourly time scales for all intervals of data except one. Repeated factor of 2 variations in intensity, occuring on 10–30 second time scales, were observed during the first 50 minutes of the 1979 Nov. 5th observation. These variations, however, were anticorrelated with variations seen in an adjacent background region. Concurrent MPC observations also failed to confirm the rapid changes, although they should have been readily detected. Thus, we conclude that the observed rapid variations are not intrinsic to the source, but originated in the IPC. These results can have implications for other IPC reports of short time scale variability for active galaxies and for source models based on such observations.


Sign in / Sign up

Export Citation Format

Share Document