scholarly journals Effect of prolonged sitting immobility on shear wave velocity of the lower leg muscles in healthy adults: A proof-of-concept study

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251532
Author(s):  
Kumiko Okino ◽  
Mitsuhiro Aoki ◽  
Masahiro Yamane ◽  
Chikashi Kohmura

Objective The purpose of this study is to investigate the physical changes of the lower leg muscles in the compartment by observing the changes in the shear wave velocity of the gastrocnemius, soleus and tibialis anterior muscles with time in the sitting position for 2 hours and after elevation of the lower leg. Materials and methods The subjects were 24 healthy adult males (average age 26.6 years). Shear wave velocity was measured by Aplio 500 in immobilized leg immediately after the start of sitting, 60 minutes and 120 minutes after the start of sitting. After 120 minutes the subjects raised the lower leg for 3 minutes, then measured again. Results In the lateral and medial gastrocnemius, there was a significant increase in the velocity at 60 (1.58 ± 0.06, 1.70 ± 0.09 m/s) and 120 minutes (1.70 ± 0.10, 1.83 ± 0.11 m/s) after the start of the test (1.52 ± 0.06, 1.66 ± 0.10 m/s), respectively (p<0.01). In the soleus and the tibialis anterior, there was a significant increase in the velocity at 120 minutes (1.89 ± 0.17, 2.30 ± 0.24 m/s) compared to after the start (1.60 ± 0.15, 2.15 ± 0.26 m/s), respectively (p<0.01). In all muscles, there was a significant decrease in the velocity after the raising compared to that of 120 minutes (p<0.01). Conclusions It has been reported that the change of shear wave velocity with time is proportional to the intramuscular pressure in the leg compartment, and it is assumed that the increase of shear wave velocity in the 2-hour seated leg is due to fluid retention in extra-cellular space of the compartment.

2021 ◽  
Author(s):  
Michel Bernabei ◽  
Sabrina S. M. Lee ◽  
Eric J. Perreault ◽  
Thomas G. Sandercock

ABSTRACTUltrasound shear wave elastography can be used to characterize mechanical properties of unstressed tissue by measuring shear wave velocity (SWV), which increases with increasing tissue stiffness. Measurements of SWV have often been assumed to be directly related to the stiffness of muscle. Some have also used measures of SWV to estimate stress, since muscle stiffness and stress covary during active contractions. However, few have considered the direct influence of muscle stress on SWV, independent of the stress-dependent changes in muscle stiffness, even though it is well known that stress alters shear wave propagation. The objective of this study was to determine how well the theoretical dependency of SWV on stress can account for measured changes of SWV in passive and active muscle. Data were collected from six isoflurane-anesthetized cats; three soleus muscles and three medial gastrocnemius muscles. Muscle stress and stiffness were measured directly along with SWV. Measurements were made across a range of passively and actively generated stresses, obtained by varying muscle length and activation, which was controlled by stimulating the sciatic nerve. Our results show that SWV depends primarily on the stress in a passively stretched muscle. In contrast, the SWV in active muscle is higher than would be predicted by considering only stress, presumably due to activation-dependent changes in muscle stiffness. Our results demonstrate that while SWV is sensitive to changes in muscle stress and activation, there is not a unique relationship between SWV and either of these quantities when considered in isolation.


Solid Earth ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 379-390 ◽  
Author(s):  
Yaniv Darvasi ◽  
Amotz Agnon

Abstract. Instrumental strong motion data are not common around the Dead Sea region. Therefore, calibrating a new attenuation equation is a considerable challenge. However, the Holy Land has a remarkable historical archive, attesting to numerous regional and local earthquakes. Combining the historical record with new seismic measurements will improve the regional equation. On 11 July 1927, a rupture, in the crust in proximity to the northern Dead Sea, generated a moderate 6.2 ML earthquake. Up to 500 people were killed, and extensive destruction was recorded, even as far as 150 km from the focus. We consider local near-surface properties, in particular, the shear-wave velocity, as an amplification factor. Where the shear-wave velocity is low, the seismic intensity far from the focus would likely be greater than expected from a standard attenuation curve. In this work, we used the multichannel analysis of surface waves (MASW) method to estimate seismic wave velocity at anomalous sites in Israel in order to calibrate a new attenuation equation for the Dead Sea region. Our new attenuation equation contains a term which quantifies only lithological effects, while factors such as building quality, foundation depth, topography, earthquake directivity, type of fault, etc. remain out of our scope. Nonetheless, about 60 % of the measured anomalous sites fit expectations; therefore, this new ground-motion prediction equation (GMPE) is statistically better than the old ones. From our local point of view, this is the first time that integration of the 1927 historical data and modern shear-wave velocity profile measurements improved the attenuation equation (sometimes referred to as the attenuation relation) for the Dead Sea region. In the wider context, regions of low-to-moderate seismicity should use macroseismic earthquake data, together with modern measurements, in order to better estimate the peak ground acceleration or the seismic intensities to be caused by future earthquakes. This integration will conceivably lead to a better mitigation of damage from future earthquakes and should improve maps of seismic hazard.


2021 ◽  
pp. 875529302110010
Author(s):  
Sameer Ladak ◽  
Sheri Molnar ◽  
Samantha Palmer

Site characterization is a crucial component in assessing seismic hazard, typically involving in situ shear-wave velocity ( VS) depth profiling, and measurement of site amplification including site period. Noninvasive methods are ideal for soil sites and become challenging in terms of field logistics and interpretation in more complex geologic settings including rock sites. Multiple noninvasive active- and passive-seismic techniques are applied at 25 seismograph stations across Eastern Canada. It is typically assumed that these stations are installed on hard rock. We investigate which site characterization methods are suitable at rock sites as well as confirm the hard rock assumption by providing VS profiles. Active-source compression-wave refraction and surface wave array techniques consistently provide velocity measurements at rock sites; passive-source array testing is less consistent but it is our most suitable method in constraining the rock VS. Bayesian inversion of Rayleigh wave dispersion curves provides quantitative uncertainty in the rock VS. We succeed in estimating rock VS at 16 stations, with constrained rock VS estimates at 7 stations that are consistent with previous estimates for Precambrian and Paleozoic rock types. The National Building Code of Canada uses solely the time-averaged shear-wave velocity of the upper 30 m ( VS30) to classify rock sites. We determine a mean VS30 of ∼ 1600 m/s for 16 Eastern Canada stations; the hard rock assumption is correct (>1500 m/s) but not as hard as often assumed (∼2000 m/s). Mean variability in VS30 is ∼400 m/s and can lead to softer rock classifications, in particular, for Paleozoic rock types with lower average rock VS near the hard/soft rock boundary. Microtremor and earthquake horizontal-to-vertical spectral ratios are obtained and provide site period classifications as an alternative to VS30.


2021 ◽  
Vol 19 (6) ◽  
pp. 2343-2370
Author(s):  
Federico Passeri ◽  
Cesare Comina ◽  
Sebastiano Foti ◽  
Laura Valentina Socco

AbstractThe compilation and maintenance of experimental databases are of crucial importance in all research fields, allowing for researchers to develop and test new methodologies. In this work, we present a flat-file database of experimental dispersion curves and shear wave velocity profiles, mainly from active surface wave testing, but including also data from passive surface wave testing and invasive methods. The Polito Surface Wave flat-file Database (PSWD) is a gathering of experimental measurements collected within the past 25 years at different Italian sites. Discussion on the database content is reported in this paper to evaluate some statistical properties of surface wave test results. Comparisons with other methods for shear wave velocity measurements are also considered. The main novelty of this work is the homogeneity of the PSWD in terms of processing and interpretation methods. A common processing strategy and a new inversion approach were applied to all the data in the PSWD to guarantee consistency. The PSWD can be useful for further correlation studies and is made available as a reference benchmark for the validation and verification of novel interpretation procedures by other researchers.


2014 ◽  
Vol 635-637 ◽  
pp. 750-754
Author(s):  
Peng Hu ◽  
Qing Li ◽  
Yi Wei Xu ◽  
Nan Ying Shentu ◽  
Quan Yuan Peng

Expound the importance of soil shear strength measurement at mudslide hidden point to release the loss caused by the disaster, explain the relationship between shear wave velocity, moisture content and shear strength, design the shear strength monitoring system combining the shear wave velocity measured by Piezoelectric bender elements and moisture content.


Sign in / Sign up

Export Citation Format

Share Document