scholarly journals Numerical modeling on hybrid nanofluid (Fe3O4+MWCNT/H2O) migration considering MHD effect over a porous cylinder

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0251744
Author(s):  
Zahir Shah ◽  
Anwar Saeed ◽  
Imran Khan ◽  
Mahmoud M. Selim ◽  
Ikramullah ◽  
...  

The free convective hybrid nanofluid (Fe3O4+MWCNT/H2O) magnetized non-Darcy flow over a porous cylinder is examined by considering the effects constant heat source and uniform ambient magnetic field. The developed coupled PDEs (partial differential equations) are numerically solved using the innovative computational technique of control volume finite element method (CVFEM). The impact of increasing strength of medium porousness and Lorentz forces on the hybrid nanofluid flow are presented through contour plots. The variation of the average Nusselt number (Nuave) with the growing medium porosity, buoyancy forces, radiation parameter, and the magnetic field strength is presented through 3-D plots. It is concluded that the enhancing medium porosity, buoyancy forces and radiation parameter augmented the free convective thermal energy flow. The rising magnetic field rises the temperature of the inner wall more drastically at a smaller Darcy number. An analytical expression for Nusselt number (Nuave) is obtained which shows its functional dependence on the pertinent physical parameters. The augmenting Lorentz forces due to the higher estimations of Hartmann retard the hybrid nanoliquid flow and hence enhance the conduction.

Author(s):  
Sohail Ahmad Khan ◽  
Muhammad Ijaz Khan ◽  
Tasawar Hayat ◽  
Muhammad Faisal Javed ◽  
Ahmed Alsaedi

Purpose The purpose of this paper is to address the impact of induced magnetic field in mixed convective stagnation flow of TiO2-Cu-water hybrid nanofluid towards a stretchable sheet. Non-linear thermal radiation and heat source/sink are accounted. Flow of hybrid nanofluid is discussed. Non-linear partial differential expressions are converted to ordinary ones through appropriate transformations. Design/methodology/approach The obtained systems are solved for convergence solutions via homotopy analysis method. Graphical results are discussed for different physical variables on the velocity, induced magnetic field and temperature fields for both Cu water nanofluid and TiO2-Cu-water hybrid nanofluid. Finally, the effect of different physical variables on skin friction coefficient (Cfx) and Nusselt number Nux in the presence of water nanofluid and TiO2-Cu-water hybrid nanofluid are discussed. Findings Velocities and induced magnetic field are increasing functions of mixed convection parameter and nanoparticle volume fraction. Temperature rises for higher radiation parameter. Skin friction is greater in case of Cu-water nanoliquid, while Nusselt number is less for Cu-water nanofluid when they are compared with hybrid nanoliquid TiO2-Cu-water. Originality/value No such work is not yet present in the literature.


2022 ◽  
Vol 52 (1) ◽  
pp. 35-41
Author(s):  
Silpisikha Goswami ◽  
Kamalesh Kumar Pandit ◽  
Dipak Sarma

Our motive is to examine the impact of thermal radiation and suction or injection with viscous dissipation on an MHD boundary layer flow past a vertical porous stretched sheet immersed in a porous medium. The set of the flow equations is converted into a set of non-linear ordinary differential equations by using similarity transformation. We use Runge Kutta method and shooting technique in MATLAB Package to solve the set of equations. The impact of non-dimensional physical parameters on flow profiles is analysed and depicted in graphs. We observe the influence of non-dimensional physical quantities on the Nusselt number, the Sherwood number, and skin friction and presented in tables. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. We enhance radiation to observe the deceleration of fluid velocity and temperature profile for both suction and injection. While enhancing porosity parameter accelerates velocity whereas decelerates temperature profile. As the heat source parameter increases, the temperature of the fluid decreases for both suction and injection, it has been found. With the increasing values of the radiation parameter, the skin friction and heat transfer rate decreases. Increasing magnetic parameter decelerates the skin friction, Nusselt number, and Sherwood number.


2021 ◽  
Vol 10 (4) ◽  
pp. 600-607
Author(s):  
A. Bhattacharyya ◽  
R. Sharma ◽  
M. K. Mishra ◽  
Ali J. Chamkha ◽  
E. Mamatha

This paper is basically devoted to carry out an investigation regarding the unsteady flow of dissipative and heat absorbing hydromagnetic graphene Maxwell nanofluid over a linearly stretched sheet taking momentum and thermal slip conditions into account. Ethylene glycol is selected as a base fluid while graphene particles are considered as nanoparticles. The highly nonlinear mathematical model of the problem is converted into a set of nonlinear coupled differential equations by means of fitting similarity variables. Further, Runge-Kutta Fehlberg algorithms along with the shooting scheme are instigated to analyse the numerical solution. The variations in graphene Maxwell nanofluid velocity and temperature owing to different physical parameters have been demonstrated via numerous graphs whereas Nusselt number and skin friction coefficients are illustrated in numeric data form and are reported in different tables. In addition, a statistical method is implemented for multiple quadratic regression estimation analysis on the numerical figures of wall velocity gradient and local Nusselt number to establish the connection among heat transfer rate and physical parameters. Our numerical findings reveal that the magnetic field, unsteadiness, inclination angle of magnetic field and porosity parameters boost the graphene Maxwell nanofluid velocity while Maxwell parameter has a reversal impact on it. The regression analysis confers that Nusselt number is more prone to heat absorption parameter as compared to Eckert number. Finally, the numerical findings are compared with those of earlier published articles under restricted conditions to validate the numerical solution. The comparison of numerical findings shows an excellent conformity among the results.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1014 ◽  
Author(s):  
Essam R. EL-Zahar ◽  
Ahmed M. Rashad ◽  
Laila F. Seddek

The spotlight of this investigation is primarily the effectiveness of the magnetic field on the natural convective for a Fe3O4 ferrofluid flow over a vertical radiate plate using streamwise sinusoidal variation in surface temperature. The energy equation is reduplicated by interpolating the non-linear radiation effectiveness. The original equations describing the ferrofluid motion and energy are converted into non-dimensional equations and solved numerically using a new hybrid linearization-differential quadrature method (HLDQM). HLDQM is a high order semi-analytical numerical method that results in analytical solutions in η -direction, and so the solutions are valid overall in the η domain, not only at grid points. The dimensionless velocity and temperature curves are elaborated. Furthermore, the engineering curiosity of the drag coefficient and local Nusselt number are debated and sketched in view of various emerging parameters. The analyzed numerical results display that applying the magnetic field to the ferroliquid generates a dragging force that diminishes the ferrofluid velocity, whereas it is found to boost the temperature curves. Furthermore, the drag coefficient sufficiently minifies, while an evolution in the heat transfer rate occurs as nanoparticle volume fraction builds. Additionally, the augmentation in temperature ratio parameter signifies a considerable growth in the drag coefficient and Nusselt number. The current theoretical investigation may be beneficial in manufacturing processes, development of transport of energy, and heat resources.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 449 ◽  
Author(s):  
Ali J. Chamkha ◽  
Fatih Selimefendigil ◽  
Hakan F. Oztop

Effects of a rotating cone in 3D mixed convection of CNT-water nanofluid in a double lid-driven porous trapezoidal cavity is numerically studied considering magnetic field effects. The numerical simulations are performed by using the finite element method. Impacts of Richardson number (between 0.05 and 50), angular rotational velocity of the cone (between −300 and 300), Hartmann number (between 0 and 50), Darcy number (between 10 − 4 and 5 × 10 − 2 ), aspect ratio of the cone (between 0.25 and 2.5), horizontal location of the cone (between 0.35 H and 0.65 H) and solid particle volume fraction (between 0 and 0.004) on the convective heat transfer performance was studied. It was observed that the average Nusselt number rises with higher Richardson numbers for stationary cone while the effect is reverse for when the cone is rotating in clockwise direction at the highest supped. Higher discrepancies between the average Nusselt number is obtained for 2D cylinder and 3D cylinder configuration which is 28.5% at the highest rotational speed. Even though there are very slight variations between the average Nu values for 3D cylinder and 3D cone case, there are significant variations in the local variation of the average Nusselt number. Higher enhancements in the average Nusselt number are achieved with CNT particles even though the magnetic field reduced the convection and the value is 84.3% at the highest strength of magnetic field. Increasing the permeability resulted in higher local and average heat transfer rates for the 3D porous cavity. In this study, the aspect ratio of the cone was found to be an excellent tool for heat transfer enhancement while 95% enhancements in the average Nusselt number were obtained. The horizontal location of the cone was found to have slight effects on the Nusselt number variations.


2013 ◽  
Vol 18 (2) ◽  
pp. 599-608
Author(s):  
R. Muthucumaraswamy ◽  
V. Visalakshi

Thermal radiation effects on an unsteady free convective flow of a viscous incompressible flow of a past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence magnetic field are considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised to Tw and the concentration level near the plate is also raised to Cʹw . An exact solution to the dimensionless governing equations is obtained by the Laplace transform method, when the plate is exponentially accelerated with a velocity u= u0 exp(aʹtʹ) in its own plane against gravitational field. The effects of velocity, temperature and concentration fields are studied for different physical parameters such as the magnetic field parameter, thermal radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing magnetic field parameter or radiation parameter. But the trend is just reversed with respect to a or t .


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3291
Author(s):  
Abdul Samad Khan ◽  
He-Yong Xu ◽  
Waris Khan

This study presents the magnetized hybrid nanofluid flow with heat source/sink over an exponentially stretching/shrinking sheet. Slip conditions are implemented to analyze the hybrid nanofluid flow for both slip and no-slip conditions. Additionally, the hybrid nanofluid of alumina and copper (hybrid nanoparticles) with blood (base fluid) has been considered and discussed with both suction and injection parameters. The appropriate similarity variables are used to convert partial differential equations (PDEs) into ordinary differential equations (ODEs) and solved analytically with the help of the homotopy analysis method (HAM). The impact of different embedded parameters has been shown in the form of graphs and tables. The numerical values of skin friction and Nusselt number are presented in the form of Tables for both slip and no-slip cases. It is summarized that the upsurge of the velocity slip parameter and magnetic parameter increases the skin friction, while the rising of the thermal slip parameter and heat generation parameter decreases the Nusselt number.


Author(s):  
Guolong Li ◽  
Jin Wang ◽  
Hongxing Zheng ◽  
Gongnan Xie ◽  
Bengt Sundén

AbstractIn this paper, convective heat transfer of Fe3O4–carbon nanotubes (CNTs) hybrid nanofluid was studied in a horizontal small circular tube under influence of annular magnets. The pipe has an inner diameter of 3 mm and a length of 1.2 m. Heat transfer characteristics of the Fe3O4–water nanofluid were examined for many parameters, such as nanoparticle volume fraction in the range of 0.4–1.2% and Reynolds number in the range of 476–996. In order to increase the thermal conductivity of the Fe3O4–water nanofluid, carbon nanotubes with 0.12–0.48% volume fraction were added into the nanofluid. It was observed that for the Fe3O4–CNTs–water nanofluid with 1.44% volume fraction and under a magnetic field, the maximal local Nusselt number at the Reynolds number 996 increased by 61.54% compared with without a magnetic field. Results also show that compared with the deionized water, the maximal enhancements of the average Nusselt number are 67.9 and 20.89% for the Fe3O4–CNTs–water nanofluid with and without magnetic field, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Muhammad Jawad ◽  
Rashid Jan ◽  
Salah Boulaaras ◽  
Ibni Amin ◽  
Niaz Ali Shah ◽  
...  

Unsteady electrohydrodynamic hybrid nanofluid Al 2 O 3 ‐ Cu / H 2 O past a convective heat stretched/shrinked sheet is examined. A stagnation point fluid flow with velocity slip constrains and heat source or sink is deliberated. The combined set of PDEs is translated into ODEs by including approved similarity transformations. HAM is applied for the solution to the obtained nonlinear system. The magnetic input factor, Prandtl number, electric field factor, Eckert number, heat source factor, and unstable factor are the governing parameters. The impact of these factors on the temperature and velocity profiles features of the problem is considered with explanation. Intensification in values of electric and magnetic fields parameters enhanced the heat transfer rate. The greater Prandtl number lessens the temperature. Amplification in temperature is perceived for Eckert parameter. The heat transferred rate of hybrid nanofluid in the entire domain increases as the heat source increases, while the heat sink has the opposite effect. Skin friction and Nusselt number is increased for increasing values of magnetic field parameters. It is also noted that Nusselt number lessens for raising in Pr , E , and   Ec . Furthermore, it is eminent that the hybrid nanofluid possesses better result compared to the nanofluid.


Sign in / Sign up

Export Citation Format

Share Document