scholarly journals Two turtles with soft tissue preservation from the platy limestones of Germany provide evidence for marine flipper adaptations in Late Jurassic thalassochelydians

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252355
Author(s):  
Walter G. Joyce ◽  
Matthias Mäuser ◽  
Serjoscha W. Evers

Late Jurassic deposits across Europe have yielded a rich fauna of extinct turtles. Although many of these turtles are recovered from marine deposits, it is unclear which of these taxa are habitually marine and which may be riverine species washed into nearby basins, as adaptations to open marine conditions are yet to be found. Two new fossils from the Late Jurassic of Germany provide unusually strong evidence for open marine adaptations. The first specimen is a partial shell and articulated hind limb from the Late Jurassic (early Tithonian) platy limestones of Schernfeld near Eichstätt, which preserves the integument of the hind limb as an imprint. The skin is fully covered by flat, polygonal scales, which stiffen the pes into a paddle. Although taxonomic attribution is not possible, similarities are apparent with Thalassemys. The second specimen is a large, articulated skeleton with hypertrophied limbs referable to Thalassemys bruntrutana from the Late Jurassic (early Late Kimmeridgian) platy limestone of Wattendorf, near Bamberg. Even though the skin is preserved as a phosphatic film, the scales are not preserved. This specimen can nevertheless be inferred to have had paddles stiffened by scales based on the pose in which they are preserved, the presence of epibionts between the digits, and by full morphological correspondence to the specimen from Schernfeld. An analysis of scalation in extant turtles demonstrated that elongate flippers stiffed by scales are a marine adaptation, in contrast to the elongate but flexible flippers of riverine turtles. Phylogenetic analysis suggests that Thalassemys bruntrutana is referable to the mostly Late Jurassic turtle clade Thalassochelydia. The marine adapted flippers of this taxon therefore evolved convergently with those of later clades of marine turtles. Although thalassochelydian fossils are restricted to Europe, with one notable exception from Argentina, their open marine adaptations combined with the interconnectivity of Jurassic oceans predict that the clade must have been even more wide-spread during that time.

2017 ◽  
Vol 67 (3) ◽  
pp. 393-403 ◽  
Author(s):  
Daniel Madzia ◽  
Marcin Machalski

AbstractBrachauchenine pliosaurids were a cosmopolitan clade of macropredatory plesiosaurs that are considered to represent the only pliosaurid lineage that survived the faunal turnover of marine amniotes during the Jurassic- Cretaceous transition. However, the European record of the Early to early Late Cretaceous brachauchenines is largely limited to isolated tooth crowns, most of which have been attributed to the classic Cretaceous taxon Polyptychodon. Nevertheless, the original material of P. interruptus, the type species of Polyptychodon, was recently reappraised and found undiagnostic. Here, we describe a collection of twelve pliosaurid teeth from the upper Albian-middle Cenomanian interval of the condensed, phosphorite-bearing Cretaceous succession at Annopol, Poland. Eleven of the studied tooth crowns, from the Albian and Cenomanian strata, fall within the range of the morphological variability observed in the original material of P. interruptus from the Cretaceous of England. One tooth crown from the middle Cenomanian is characterized by a gently subtrihedral cross-section. Similar morphology has so far been described only for pliosaurid teeth from the Late Jurassic and Early Cretaceous. Even though it remains impossible to precisely settle the taxonomic distinctions, the studied material is considered to be taxonomically heterogeneous.


2012 ◽  
Vol 183 (4) ◽  
pp. 307-318 ◽  
Author(s):  
Ugur Kagan Tekin ◽  
M. Cemal Göncüoglu ◽  
Seda Uzuncimen

Abstract The Bornova Flysch Zone (BFZ) in NW Anatolia comprises several olistoliths or tectonic slivers, representing various parts of the Izmir-Ankara ocean. Radiolarian assemblages extracted from one of the olistoliths of the BFZ, cropping out along the Sögütlü section, to the NE Manisa city, were studied in detail. The lowermost part of the section contains latest Bajocian – early Callovian radiolarian taxa, followed by radiolarian assemblages indicating Late Jurassic to early Late Cretaceous (Cenomanian) ages. Previous studies reveal that the Izmir-Ankara oceanic basin was initially opened during late Ladinian – early Carnian. The new radiolarian data obtained from this olistolith reveals that relatively condensed, and possibly more or less continuous, pelagic sedimentation took place during the late Middle Jurassic to early Late Cretaceous in a non-volcanic oceanic basin closer to the Tauride-Anatolide platform margin.


2018 ◽  
Vol 66 ◽  
pp. 21-46 ◽  
Author(s):  
Marco Marzola ◽  
Octávio Mateus ◽  
Jesper Milàn ◽  
Lars B. Clemmensen

This article presents a synthesis of Palaeozoic and Mesozoic fossil tetrapods from Greenland, including an updated review of the holotypes and a new photographic record of the main specimens. All fossil tetrapods found are from East Greenland, with at least 30 different known taxa: five stem tetrapods (Acanthostega gunnari, Ichthyostega eigili, I. stensioi, I. watsoni, and Ymeria denticulata) from the Late Devonian of the Aina Dal and Britta Dal Formations; four temnospondyl amphibians (Aquiloniferus kochi, Selenocara groenlandica, Stoschiosaurus nielseni, and Tupilakosaurus heilmani) from the Early Triassic of the Wordie Creek Group; two temnospondyls (Cyclotosaurus naraserluki and Gerrothorax cf. pulcherrimus), one testudinatan (cf. Proganochelys), two stagonolepids (Aetosaurus ferratus and Paratypothorax andressorum), the eudimorphodontid Arcticodactylus, undetermined archosaurs (phytosaurs and both sauropodomorph and theropod dinosaurs), the cynodont Mitredon cromptoni, and three mammals (Haramiyavia clemmenseni, Kuehneotherium, and cf. ?Brachyzostrodon), from the Late Triassic of the Fleming Fjord Formation; one plesiosaur from the Early Jurassic of the Kap Stewart Formation; one plesiosaur and one ichthyosaur from the Late Jurassic of the Kap Leslie Formation, plus a previously unreported Late Jurassic plesiosaur from Kronprins Christian Land. Moreover, fossil tetrapod trackways are known from the Late Carboniferous (morphotype Limnopus) of the Mesters Vig Formation and at least four different morphologies (such as the crocodylomorph Brachychirotherium, the auropodomorph Eosauropus and Evazoum, and the theropodian Grallator) associated to archosaurian trackmakers are known from the Late Triassic of the Fleming Fjord Formation. The presence of rich fossiliferous tetrapod sites in East Greenland is linked to the presence of well-exposed continental and shallow marine deposits with most finds in terrestrial deposits from the Late Devonian and the Late Triassic.


Science ◽  
2010 ◽  
Vol 327 (5965) ◽  
pp. 571-574 ◽  
Author(s):  
J. N. Choiniere ◽  
X. Xu ◽  
J. M. Clark ◽  
C. A. Forster ◽  
Y. Guo ◽  
...  
Keyword(s):  

2017 ◽  
Vol 53 (3) ◽  
pp. 1215-1226 ◽  
Author(s):  
Tomasz Szczygielski ◽  
Daniel Tyborowski ◽  
Błażej Błażejowski
Keyword(s):  

1996 ◽  
Vol 133 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Taniel Danelian ◽  
Alastair H. F. Robertson ◽  
Sarantis Dimitriadis

AbstractWell-preserved Radiolaria have been discovered in calcareous silt turbidites and mudstones intercalated with basic extrusives of the Guevgueli Ophiolite, northern Greece. The mudstones contain terrigenous silt, probably derived from adjacent continental basement of the Serbo-Macedonian and/or Paikon units. Volcanic quartz and rare volcanic glass were probably derived from an active continental margin arc (Paikon volcanic arc) to the west. The radiolarian sediments were deposited within fault-controlled hollows in the ophiolitic extrusives, and then covered by massive and pillowed extrusives. The radiolarian assemblage is indicative of an early Late Jurassic (Oxfordian) age, which therefore dates the genesis of the Guevgueli Ophiolite. Our data are consistent with the age of the intrusive Late Jurassic Fanos Granite, believed to be contemporaneous with the Guevgueli Ophiolite. In general, the Guevgueli and related ophiolites of northern Greece are thought to have formed within a transtensional intra-continental marginal basin, generated in response to oblique eastward subduction of older Tethyan oceanic crust (Almopias ocean).


2019 ◽  
Author(s):  
Christian Püntener ◽  
Jérémy Anquetin ◽  
Jean-Paul Billon-Bruyat

The region of Porrentruy (Swiss Jura Mountains) is known for its rich and diverse assemblage of Late Jurassic coastal marine turtles (Thalassochelydia). Dominated by the “Plesiochelyidae”, this assemblage also includes representatives of the two other thalassochelydian groups, the “Thalassemydidae” and “Eurysternidae.” In this study, we present new shell-based material from Porrentruy referable to eurysternids. One specimen represents a juvenile individual or a relatively small taxon, and is notably characterized by a well fenestrated plastron exhibiting a wider than long central plastral fontanelle. Two other specimens are much larger and possibly represent the largest eurysternids known to date. The fourth specimen is characterized by a unique plastral morphology otherwise only known in very small juveniles. This is the first time this unique plastral morphology is known to persist in an adult or subadult. The new material described herein represents at least three distinct taxa, all of them probably new. However, we refrain from naming new species based on this incomplete material in order to avoid adding confusion to an already complex taxonomical situation. This study provides new insights into the great diversity of eurysternids during the Late Jurassic.


2020 ◽  
Author(s):  
Remi J.G. Charton

Our understanding of the Earth’s interior is limited by the access we have of its deep layers, while the knowledge we have of Earth’s evolution is restricted to harvested information from the present state of our planet. We therefore use proxies, physical and numerical models, and observations made on and from the surface of the Earth. The landscape results from a combination of processes operating at the surface and in the subsurface. Thus, if one knows how to read the landscape, one may unfold its geological evolution.In the past decade, numerous studies have documented km-scale upward and downward vertical movements in the continental rifted margins of the Atlantic Ocean and in their hinterlands. These movements, described as exhumation (upward) and subsidence (downward), have been labelled as “unpredicted” and/or “unexpected”. ‘Unpredicted’ because conceptual, physical, and numerical models that we dispose of for the evolution of continental margins do not generally account for these relatively recent observations. ‘Unexpected’ because the km-scale vertical movements occurred when our record of the geological history is insufficient to support them. As yet, the mechanisms responsible for the km-scale vertical movements remain enigmatic.One of the common techniques used by geoscientists to investigate the past kinematics of the continental crust is to couple ‘low-temperature thermochronology’ and ‘time-temperature modelling’. In Morocco alone, over twenty studies were conducted following this approach. The reason behind this abundance of studies and the related enthusiasm of researchers towards Moroccan geology is due to its puzzling landscapes and complex history. In this Thesis, we investigate unconstrained aspects of the km-scale vertical movements that occurred in Morocco and its surroundings (Canary Islands, Algeria, Mali, and Mauritania). The transition area between generally subsiding domains and mostly exhuming domains, yet poorly understood, is discussed via the evolution of a profile, running across the rifted continental margin (chapter 2). Low-temperature thermochronology data from the central Morocco coastal area document a km-scale exhumation between the Permian and the Early/Middle Jurassic. The related erosion fed sediments to the subsiding Mesozoic basin to the northwest. Basement rocks along the transect were subsequently buried between the Late Jurassic and the Early Cretaceous. From late Early/Late Cretaceous onwards, rocks present along the transect were exhumed to their present-day position.The post-Variscan thermal and geological history of the Anti-Atlas belt in central Morocco is constrained with a transect constructed along strike of the belt (chapter 3). The initial episode occurred in the Late Triassic and led to a km-scale exhumation of crustal rocks by the end of the Middle Jurassic. The following phase was characterised by basement subsidence and occurred during the Late Jurassic and most of the Early Cretaceous. The basement rocks were then slowly brought to the surface after experiencing a km-scale exhumation throughout the Late Cretaceous and the Cenozoic. The exhumation episodes extended into the interior of the African tectonic plate, perhaps beyond the sampled belt itself. Exhumation rates and fluxes of material eroded from the hinterlands of the Moroccan rifted margin were quantified from the Permian (chapter 4). The high denudation rates, obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene, are comparable to values typical of rift flank, domal, or structural uplifts. These are obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene. Exhumation rates for other periods in northern to southern Morocco average around ‘normal’ denudation values. Periods of high production of sediments in the investigated source areas are the Permian, the Jurassic, the Early Cretaceous, and the NeogeneThe Phanerozoic evolution of source-to-sink systems in Morocco and surroundings is illustrated in several maps (chapter 5). Substantial shifts in the source areas were evidenced between the central and northern Moroccan domains during the Middle-Late Jurassic and between the Meseta and the Anti-Atlas during the Early-Late Cretaceous. Finally, the mechanisms responsible for the onset and subsistence of the unpredicted km-scale vertical movements are discussed (chapter 6). We propose that a combination of the large-scale crustal folding, mantle-driven dynamic topography, and thermal subsidence, superimposed to changes in climates, sea level and erodibility of the exposed rocks, were crucial to the timing, amplitude, and style of the observed vertical movements.The km-scale vertical movements will continue to be studied for years to come. Expectantly, this Thesis will deliver sufficiently robust grounds for further elaborated and integrated studies in Morocco and beyond.


2018 ◽  
Vol 35 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Kleyton M. Cantalice ◽  
Jesús Alvarado-Ortega ◽  
Paulo M. Brito

Vinctifer ferrusquiai sp. nov. is described in this paper. This aspidorhynchid fish was found in Kimmeridgian marine deposits of the Sabinal Formation, exposed in the Llano Yosobé, near Tlaxiaco, Oaxaca, Mexico. The single specimen of this species shows enough diagnostic characters to be included in the order Aspidorhynchiformes, the family Aspidorhynchidae, and the genus Vinctifer. These characters include an elongate rostrum consisting of the premaxillae fused and anteriorly elongated, forming a tube-like, as well as an preopercular sensory canal located close to the posterior edge of the preopercle. Other features are the lack of premaxilla, the development of a wide posterior expansion of the maxilla, and a stout triangular preopercle. A unique combination of characters supports the erection of this new species, whose ganoine on dermal bones of the head are strongly ornamented with tubercles and ridges, and the flank scales are entirely smooth and not serrated. This Jurassic record is the first indubitable pre-Cretaceous finding of Vinctifer, the oldest into the Hispanic Corridor, and the oldest in North America.


Sign in / Sign up

Export Citation Format

Share Document