scholarly journals Infectious titer determination of lentiviral vectors using a temporal immunological real-time imaging approach

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254739
Author(s):  
Jennifer J. Labisch ◽  
G. Philip Wiese ◽  
Kalpana Barnes ◽  
Franziska Bollmann ◽  
Karl Pflanz

The analysis of the infectious titer of the lentiviral vector samples obtained during upstream and downstream processing is of major importance, however, also the most challenging method to be performed. Currently established methods like flow cytometry or qPCR lack the capability of enabling high throughput sample processing while they require a lot of manual handling. To address this limitation, we developed an immunological real-time imaging method to quantify the infectious titer of anti-CD19 CAR lentiviral vectors with a temporal readout using the Incucyte® S3 live-cell analysis system. The infective titers determined with the Incucyte® approach when compared with the flow cytometry-based assay had a lower standard deviation between replicates and a broader linear range. A major advantage of the method is the ability to obtain titer results in real-time, enabling an optimal readout time. The presented protocol significantly decreased labor and increased throughput. The ability of the assay to process high numbers of lentiviral samples in a high throughput manner was proven by performing a virus stability study, demonstrating the effects of temperature, salt, and shear stress on LV infectivity.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrew T. Meek ◽  
Nils M. Kronenberg ◽  
Andrew Morton ◽  
Philipp Liehm ◽  
Jan Murawski ◽  
...  

AbstractImportant dynamic processes in mechanobiology remain elusive due to a lack of tools to image the small cellular forces at play with sufficient speed and throughput. Here, we introduce a fast, interference-based force imaging method that uses the illumination of an elastic deformable microcavity with two rapidly alternating wavelengths to map forces. We show real-time acquisition and processing of data, obtain images of mechanical activity while scanning across a cell culture, and investigate sub-second fluctuations of the piconewton forces exerted by macrophage podosomes. We also demonstrate force imaging of beating neonatal cardiomyocytes at 100 fps which reveals mechanical aspects of spontaneous oscillatory contraction waves in between the main contraction cycles. These examples illustrate the wider potential of our technique for monitoring cellular forces with high throughput and excellent temporal resolution.


2021 ◽  
Vol 9 (2) ◽  
pp. 025004
Author(s):  
Linting Lv ◽  
Li Dong ◽  
Jiajia Zheng ◽  
Tuohutaerbieke Maermaer ◽  
Xiangbo Huang ◽  
...  

2020 ◽  
Author(s):  
Hideharu Mikami ◽  
Makoto Kawaguchi ◽  
Chun-Jung Huang ◽  
Hiroki Matsumura ◽  
Takeaki Sugimura ◽  
...  

ABSTRACTBy virtue of the combined merits of flow cytometry and fluorescence microscopy, imaging flow cytometry (IFC) has become an established tool for cell analysis in diverse biomedical fields such as cancer biology, microbiology, immunology, hematology, and stem cell biology. However, the performance and utility of IFC are severely limited by the fundamental trade-off between throughput, sensitivity, and spatial resolution. For example, at high flow speed (i.e., high throughput), the integration time of the image sensor becomes short, resulting in reduced sensitivity or pixel resolution. Here we present an optomechanical imaging method that overcomes the trade-off by virtually “freezing” the motion of flowing cells on the image sensor to effectively achieve 1,000 times longer exposure time for microscopy-grade fluorescence image acquisition. Consequently, it enables high-throughput IFC of single cells at >10,000 cells/s without sacrificing sensitivity and spatial resolution. The availability of numerous information-rich fluorescence cell images allows high-dimensional statistical analysis and accurate classification with deep learning, as evidenced by our demonstration of unique applications in hematology and microbiology.


2019 ◽  
Vol 3 (10) ◽  
pp. 2190-2190
Author(s):  
Yinzhu Jin ◽  
Zhenhao Tian ◽  
Xiangge Tian ◽  
Lei Feng ◽  
Jingnan Cui ◽  
...  

Correction for ‘A highly selective fluorescent probe for real-time imaging of bacterial NAT2 and high-throughput screening of natural inhibitors for tuberculosis therapy’ by Yinzhu Jin et al., Mater. Chem. Front., 2019, 3, 145–150.


2021 ◽  
Author(s):  
Xiaocen Wang ◽  
Min Lin ◽  
Junkai Tong ◽  
Lin Liang ◽  
Jian Li ◽  
...  

Abstract Corrosion can affect the reliability of materials, which has attracted the attention of the industry. Corrosion detection and quantitative analysis are particularly important for scientific management and decision-making. In this paper, the imaging method based ultrasonic guided wave (UGW) detection technology and fully connected neural network (FCNN) is proposed to realize real-time imaging of corrosion damages. The imaging method contains offline training and online testing. Offline training aims to establish the relationship between detection signals and velocity maps and it is accelerated by adaptive moment estimation (Adam) algorithm. In the process of online testing, the trained model can be called directly to realize real-time imaging, that is, the detection signals are fed into the model and the network will predict the velocity maps. Finally, the velocity maps are converted to thickness maps according to the dispersion curves. Numerical experimental results show that the mean square errors (mses) are respectively 9.08 × 10−4, 2.47 × 10−3 and 2.59 × 10−3 in training, validation and testing. Compared with irregular corrosion damages, the imaging method has better imaging quality for circular corrosion damages.


2015 ◽  
Vol 35 (2) ◽  
pp. 0211006
Author(s):  
文政博 Wen Zhengbo ◽  
吴雨霖 Wu Yulin ◽  
张秀达 Zhang Xiuda ◽  
严惠民 Yan Huimin ◽  
魏少鹏 Wei Shaopeng

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 497-497 ◽  
Author(s):  
Phillip W. Hargrove ◽  
Steven Kepes ◽  
Hideki Hanawa ◽  
Cheng Cheng ◽  
Geoff Neale ◽  
...  

Abstract The development of lymphoid leukemia in two children with X-SCID who underwent gene therapy was partially due to activation of the LMO-2 proto-oncogene by the retroviral LTR of the vector which inserted nearby (Hacein-Bey-Abina et al., Science 2003), highlighting the importance of vector design on the potential to activate genes near vector integration sites. As gene therapy vectors for other blood disorders are evaluated, it seems prudent to assess the safety issues regarding insertion for each particular vector in appropriate pre-clinical models. We have focused on developing γ-globin lentiviral vectors for gene therapy of the hemoglobin disorders and have documented correction of a murine model of β-thalassemia in the absence of observable adverse events (Persons et al., Blood 2003; Hanawa et al., Blood 2004). To more thoroughly evaluate the potential for vector-induced genotoxicity, we have examined whether self-inactivating (SIN) γ-globin lentiviral vectors containing erythroid-specific, β-globin locus enhancer elements can alter the expression of genes nearby the vector insertion site, as the retroviral LTR did in the X-SCID trial. To ascertain whether an integrated globin vector could influence endogenous transcriptional activity in erythroid precursors, 15 clonal spleen colony erythroblast populations (≥ 95% erythroid) containing lentiviral globin vector insertions and 15 untransduced control clones were derived from bone marrow cells of β-thalassemic mice. The transcriptional profile of each clone was determined using the Affymetrix Mouse 430A microarray (representing ~15,000 genes). Expression of 4500–6000 genes was observed in all samples. Ligation-mediated PCR was used to obtain the vector-genomic DNA junction sequences, allowing identification of vector insertion locations in 13 of the clones using the NCBI database. Of these, 6 globin vector clones had 16 genes, including N-ras, which were located within 100kb of the vector insertion site and were represented on the array. Only one gene, D3Jfr1, encoding a “cold shock” DNA binding protein and which was disrupted by an intronic vector insertion, had a change in signal value relative to the mean signal value of the controls. Real time RT-PCR confirmed a 4-fold reduction in expression of this gene. Both microarray and real time RT-PCR demonstrated that expression of N-ras was unchanged. For comparison, 15 clones with insertions of a lentiviral vector containing the MSCV retroviral LTR, were also derived, along with 10 additional mock control clones. We are currently analyzing the expression of some 116 genes that lie within 300kb of the vector insertions, relative to the mean expression level in the 25 mock transduced clones. Additionally, we have expanded analysis of the globin vector clones to evaluate changes in expression of 107 genes located within 300kb of the vector insertions. These data should prove useful to assess whether integrated SIN globin lentiviral vectors containing erythroid-specific regulatory elements have a propensity to alter transcriptional activity in the progeny of genetically modified hematopoietic stem cells, relative to vectors containing viral LTR elements.


2014 ◽  
Vol 80 (17) ◽  
pp. 5439-5446 ◽  
Author(s):  
Wesley Loftie-Eaton ◽  
Allison Tucker ◽  
Ann Norton ◽  
Eva M. Top

ABSTRACTThe maintenance of a plasmid in the absence of selection for plasmid-borne genes is not guaranteed. However, plasmid persistence can evolve under selective conditions. Studying the molecular mechanisms behind the evolution of plasmid persistence is key to understanding how plasmids are maintained under nonselective conditions. Given the current crisis of rapid antibiotic resistance spread by multidrug resistance plasmids, this insight is of high medical relevance. The conventional method for monitoring plasmid persistence (i.e., the fraction of plasmid-containing cells in a population over time) is based on cultivation and involves differentiating colonies of plasmid-containing and plasmid-free cells on agar plates. However, this technique is time-consuming and does not easily lend itself to high-throughput applications. Here, we present flow cytometry (FCM) and real-time quantitative PCR (qPCR) as alternative tools for monitoring plasmid persistence. For this, we measured the persistence of a model plasmid, pB10::gfp, in threePseudomonashosts and in known mixtures of plasmid-containing and -free cells. We also compared three performance criteria: dynamic range, resolution, and variance. Although not without exceptions, both techniques generated estimates of overall plasmid loss rates that were rather similar to those generated by the conventional plate count (PC) method. They also were able to resolve differences in loss rates between artificial plasmid persistence assays. Finally, we briefly discuss the advantages and disadvantages for each technique and conclude that, overall, both FCM and real-time qPCR are suitable alternatives to cultivation-based methods for routine measurement of plasmid persistence, thereby opening avenues for high-throughput analyses.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3757
Author(s):  
Peter Zolliker ◽  
Mostafa Shalaby ◽  
Elisa Söllinger ◽  
Elena Mavrona ◽  
Erwin Hack

We present a real-time THz imaging method using a commercial fiber-coupled photo conductive antenna as the THz source and an uncooled microbolometer camera for detection. This new combination of state-of-the-art components is very adaptable due to its compact and uncooled radiation source, whose fiber coupling allows for a flexible placement. Using a camera with high sensitivity renders real-time imaging possible. As a proof-of-concept, the beam shape of a THz Time Domain Spectrometer was measured. We demonstrate real time imaging at nine frames per second and show its potential for practical applications in transmission geometry covering both material science and security tasks. The results suggest that hidden items, complex structures and the moisture content of (biological) materials can be resolved. We discuss the limits of the current setup, possible improvements and potential (industrial) applications, and we outline the feasibility of imaging in reflection geometry or extending it to multi-spectral imaging using band pass filters.


Sign in / Sign up

Export Citation Format

Share Document