scholarly journals Differential expression profile of gluten-specific T cells identified by single-cell RNA-seq

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258029
Author(s):  
Ying Yao ◽  
Łukasz Wyrozżemski ◽  
Knut E. A. Lundin ◽  
Geir Kjetil Sandve ◽  
Shuo-Wang Qiao

Gluten-specific CD4+ T cells drive the pathogenesis of celiac disease and circulating gluten-specific T cells can be identified by staining with HLA-DQ:gluten tetramers. In this first single-cell RNA-seq study of tetramer-sorted T cells from untreated celiac disease patients blood, we found that gluten-specific T cells showed distinct transcriptomic profiles consistent with activated effector memory T cells that shared features with Th1 and follicular helper T cells. Compared to non-specific cells, gluten-specific T cells showed differential expression of several genes involved in T-cell receptor signaling, translational processes, apoptosis, fatty acid transport, and redox potentials. Many of the gluten-specific T cells studied shared T-cell receptor with each other, indicating that circulating gluten-specific T cells belong to a limited number of clones. Moreover, the transcriptional profiles of cells that shared the same clonal origin were transcriptionally more similar compared with between clonally unrelated gluten-specific cells.

2020 ◽  
Author(s):  
Menghua Lyu ◽  
Shiyu Wang ◽  
Kai Gao ◽  
Longlong Wang ◽  
Bin Li ◽  
...  

AbstractCD4 T cell is crucial in CMV infection, but its role is still unclear during this process. Here, we present a single-cell RNA-seq together with T cell receptor (TCR) sequencing to screen the heterogenicity and potential function of CMV pp65 reactivated CD4+ T cell subsets from human peripheral blood, and unveil their potential interactions. Notably, Treg composed the major part of these reactivated cells. Treg gene expression data revealed multiple transcripts of both inflammatory and inhibitory functions. Additionally, we describe the detailed phenotypes of CMV-reactivated effector-memory (Tem), cytotoxic T (CTL), and naïve T cells at the single-cell resolution, and implied the direct derivation of CTL from naïve CD4+ T cells. By analyzing the TCR repertoire, we identified a clonality in stimulated Tem and CTLs, and a tight relationship of Tem and CTL showing a large share in TCR. This study provides clues for understanding the function of CD4+ T cells subsets and unveils their interaction in CMV infection, and may promote the development of CMV immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Menghua Lyu ◽  
Shiyu Wang ◽  
Kai Gao ◽  
Longlong Wang ◽  
Xijun Zhu ◽  
...  

CD4+ T cells are crucial in cytomegalovirus (CMV) infection, but their role in infection remains unclear. The heterogeneity and potential functions of CMVpp65-reactivated CD4+ T cell subsets isolated from human peripheral blood, as well as their potential interactions, were analyzed by single-cell RNA-seq and T cell receptor (TCR) sequencing. Tregs comprised the largest population of these reactivated cells, and analysis of Treg gene expression showed transcripts associated with both inflammatory and inhibitory functions. The detailed phenotypes of CMV-reactivated CD4+ cytotoxic T1 (CD4+ CTL1), CD4+ cytotoxic T2 (CD4+ CTL2), and recently activated CD4+ T (Tra) cells were analyzed in single cells. Assessment of the TCR repertoire of CMV-reactivated CD4+ T cells confirmed the clonal expansion of stimulated CD4+ CTL1 and CD4+ CTL2 cells, which share a large number of TCR repertoires. This study provides clues for resolving the functions of CD4+ T cell subsets and their interactions during CMV infection. The specific cell groups defined in this study can provide resources for understanding T cell responses to CMV infection.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A204-A204
Author(s):  
Jack Reid ◽  
Shihong Zhang ◽  
Ariunaa Munkhbat ◽  
Matyas Ecsedi ◽  
Megan McAfee ◽  
...  

BackgroundT Cell Receptor (TCR)-T cell therapies have shown some promising results in cancer clinical trials, however the efficacy of treatment remains suboptimal. Outcomes could potentially be improved by utilizing highly functional TCRs for future trials. Current TCR discovery methods are relatively low throughput and rely on synthesis and screening of individual TCRs based on tetramer binding and peptide specificity, which is costly and labor intensive. We have developed and validated a pooled approach relying on directly cloned TCRs transduced into a fluorescent Jurkat reporter system (figure 1). This approach provides an unbiased, high-throughput method for TCR discovery.MethodsAs a model for POTS, T cells specific for a peptide derived adenovirus structural protein were sorted on tetramer and subjected to 10x single cell VDJ analysis. Pools of randomly paired TCR alpha and beta chains were cloned from the 10x cDNA into a lentiviral vector and transduced into a Jurkat reporter cells. Consecutive stimulations with cognate antigen followed by cell sorts were performed to enrich for functional TCRs. Full length TCRab pools were sequenced by Oxford Nanopore Technologies (ONT) and compared to a 10x dataset to find naturally paired TCRs.ResultsComparison between the ex vivo single cell VDJ sequencing and ONT sequencing of the transduced antigen specific TCRs showed more than 99% of the TCR pairs found in reporter positive Jurkat cells were naturally paired TCRs. The functionality of 8 TCR clonotypes discovered using POTS were compared and clone #2 showed the strongest response. Of the selected clonotypes, clone #2 showed a low frequency of 0.9% in the ex vivo single cell VDJ sequencing. After the first round of stimulation and sequencing, clone #2 takes up of 5% of all reporter-positive clones. The abundance of clone #2 further increased to 17% after another round of stimulation, sorting and sequencing, suggesting this method can retrieve and enrich for highly functional antigen specific TCRs.Abstract 192 Figure 1Outline of the POTS workflow.ConclusionsPOTS provides a high-throughput method for discovery of naturally paired, high-avidity T cell receptors. This method mitigates bias introduced by T cell differentiation state by screening TCRs in a clonal reporter system. Additionally, POTS allows for screening of low abundance clones when compared with traditional TCR discovery techniques. Pooled TCRs could also be screened in vivo with primary T cells in a mouse model to screen for the most functional and physiologically fit TCR for cancer treatment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1451-1451
Author(s):  
Chao Wang ◽  
Qiang Gong ◽  
Weiwei Zhang ◽  
Javeed Iqbal ◽  
Yang Hu ◽  
...  

Abstract Introduction: Diversity of the T-cell receptor (TCR) repertoire reflects the initial V(D)J recombination events as shaped by selection by self and foreign antigens. Next generation sequencing is a powerful method for profiling the TCR repertoire, including sequences encoding complementarity-determining region 3 (CDR3). Peripheral T-cell lymphoma (PTCL) is a group of malignancies that originate from mature T-cells. T-cell clonality of PTCL is routinely evaluated with a PCR-based method to detect TCR gamma and less frequently beta chain rearrangements using genomic DNA. However, there are limitations with this approach, chief among which is the lack of sequence information. To date, the TCR repertoire of different subtypes of PTCL remains poorly defined. Objective: The purpose of this study was to determine the utility of RNA-seq for assessing T-cell clonality and analyzing the TCR usage in PTCL samples. Methods: We analyzed RNA-seq data from 30 angioimmunoblastic T-cell lymphoma (AITL), 23 Anaplastic large cell lymphoma (ALCL), 10 PTCL-NOS, and 17 NKCL. Data from naïve T cells, TFH cells, and T-effector cells (CD4+ CD45RA− TCRβ+ PD-1lo CXCR5lo PSGL-1hi) were obtained from publicly available resources. Referenced TCR and immunoglobulin transcripts according to the International ImMunoGeneTics Information System (IMGT) database were quantified by Kallisto software. We divided the pattern of Vβ (T-cell receptor beta variable region) into three categories: monoclonal (mono- or bi-allelic), oligoclonal (3-4 dominant clones), and polyclonal. CDR3 sequences were extracted by MiXCR program. PCR of the gamma chain using genomic DNA was utilized to validate the clonality of selected cases. Single nucleotide variants (SNVs) were called from aligned RNA-seq data using Samtools and VarScan 2 programs. Results: Analysis of RNA-seq data identified preferential usage of TCR-Vβ, Dβ (diversity region), and Jβ (joining region), length diversity of CDR3, and usage of nontemplated bases. Dominant clones could be identified by transcriptome sequencing in most cases of AITL (21/30), ALCL (14/23), and PTCL-NOS (7/10). Median CDR3 length is 42 nucleotides (nt) in normal T cells, 41 nt in ALCL, 48 nt in PTCL-NOS, and 44 nt in AITL. In 30 AITL samples, 20 showed monoclonal Vβ with a single peak, and 9 showed polyclonal Vβ. One case had two dominant clones with different CDR3, only one of which was in frame, implying biallelic rearrangements. As many as 3511 clones supported by at least four reads could be detected in polyclonal cases. In monoclonal cases, the dominant clone varied between 11.8% and 92.8% of TCR with Vβ rearrangements. TRBV 20-1, which is the most commonly used segment in normal T cells, is also frequently used in the dominant clones in AITL. The monoclonal AITL cases showed mutation of TET2, RHOA, DNMT3A or IDH2 whereas most of the polyclonal cases were negative or had low VAF mutation suggesting low or absent of tumor infiltrate in the specimen sequenced. There is no obvious correlation of any of the mutations with Vβ usage. Clonal B cell expansion was noted in some AITL samples. The occurrence of a preferential TRBV9 expansion in PTCL-NOS was striking. More than half of ALCL samples (14/23) showed expression of clonal Vβ, but 3/14 dominant clones were out-of-frame. γ chain expression was very low in cells expressing TCRαβ, but both expression levels and clonality were higher in TCRγδ expressing tumors. NKCL did not express significant levels of TCR Vβ or Vγ genes. Discussion/Interpretation: Transcriptome sequencing is a useful tool for understanding the TCR repertoire in T cell lymphoma and for detecting clonality for diagnosis. Clonal, often out-of-frame, Vβ transcripts are detectable in most ALCL cases and preferential TRBV9 usage is found in PTCL-NOS. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Xu Jiang ◽  
Shi-yu Wang ◽  
Chen Zhou ◽  
Jing-hua Wu ◽  
Yu-hao Jiao ◽  
...  

AbstractThe pathogenesis of rheumatoid arthritis (RA), a systemic autoimmune disease characterized by autoreactive T-cell accumulation and pro-inflammatory cytokine overproduction, is unclear. Systematically addressing T-cell receptor (TCR) repertoires of different CD4+ T-cell subsets could help understand RA pathogenesis. Here, peripheral CD4+ T cells from treatment-naïve RA patients and healthy controls were sorted into seven subsets including naïve, effector, central memory, effector memory (EMT), Th1, Th17, and regulatory T cells. T-cell receptor β chain repertoires were then analyzed by next-generation sequencing. We identified T-cell clonal expansion in EMT and Th17 cells, with highly similar TCR repertoires between them. Ex vivo experiments demonstrated the preferred differentiation from EMT to Th17 cells in RA. Moreover, TCR diversity in subsets including Th17 was negatively correlated with RA disease activity indices such as C-reactive protein and erythrocyte sedimentation rate. Thus, shared and abnormally expanded EMT and Th17 TCR repertoires might be pivotal for RA pathogenesis.


2021 ◽  
Author(s):  
Jing Li ◽  
Maxim Elisha Zaslavsky ◽  
Yapeng Su ◽  
Michael Sikora ◽  
Vincent van Unen ◽  
...  

Previous reports show that Ly49+CD8+ T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8+ T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR+CD8+ T cells can efficiently eliminate pathogenic gliadin-specific CD4+ T cells from Celiac disease (CeD) patients' leukocytes in vitro. Furthermore, we observe elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR+CD8+ T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8+ T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e52054 ◽  
Author(s):  
Ramiro Diz ◽  
Alaina Garland ◽  
Benjamin G. Vincent ◽  
Mark C. Johnson ◽  
Nicholas Spidale ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Olivier B. Bakker ◽  
Aarón D. Ramírez-Sánchez ◽  
Zuzanna A. Borek ◽  
Niek de Klein ◽  
Yang Li ◽  
...  

AbstractCeliac disease is an auto-immune disease in which an immune response to dietary gluten leads to inflammation and subsequent atrophy of small intestinal villi, causing severe bowel discomfort and malabsorption of nutrients. The major instigating factor for the immune response in celiac disease is the activation of gluten-specific CD4+ T cells expressing T cell receptors that recognize gluten peptides presented in the context of HLA-DQ2 and DQ8. Here we provide an in-depth characterization of 28 gluten-specific T cell clones. We assess their transcriptional and epigenetic response to T cell receptor stimulation and link this to genetic factors associated with celiac disease. Gluten-specific T cells have a distinct transcriptional profile that mostly resembles that of Th1 cells but also express cytokines characteristic of other types of T-helper cells. This transcriptional response appears not to be regulated by changes in chromatin state, but rather by early upregulation of transcription factors and non-coding RNAs that likely orchestrate the subsequent activation of genes that play a role in immune pathways. Finally, integration of chromatin and transcription factor binding profiles suggest that genes activated by T cell receptor stimulation of gluten‑specific T cells may be impacted by genetic variation at several genetic loci associated with celiac disease.


Author(s):  
Stefan A. Schattgen ◽  
Kate Guion ◽  
Jeremy Chase Crawford ◽  
Aisha Souquette ◽  
Alvaro Martinez Barrio ◽  
...  

AbstractMulti-modal single-cell technologies capable of simultaneously assaying gene expression and surface phenotype across large numbers of immune cells have described extensive heterogeneity within these complex populations, in healthy and diseased states. In the case of T cells, these technologies have made it possible to profile clonotype, defined by T cell receptor (TCR) sequence, and phenotype, as reflected in gene expression (GEX) profile, surface protein expression, and peptide:MHC (pMHC) binding, across large and diverse cell populations. These rich, high-dimensional datasets have the potential to reveal new relationships between TCR sequence and T cell phenotype that go beyond identification of features shared by clonally related cells. In order to uncover these connections in an unbiased way, we developed a graph-theoretic approach---clonotype neighbor-graph analysis or “CoNGA”---that identifies correlations between GEX profile and TCR sequence through statistical analysis of a pair of T cell similarity graphs, one in which cells are linked based on gene expression similarity and another in which cells are linked by similarity of TCR sequence. Applying CoNGA across diverse human and mouse T cell datasets uncovered known and novel associations between TCR sequence features and cellular phenotype including the classical invariant T cell subsets; a novel defined population of human blood CD8+ T cells expressing the transcription factors HOBIT and HELIOS, NK-associated receptors, and a biased TCR repertoire, representing a potential previously undescribed lineage of “natural lymphocytes”; a striking association between usage of a specific V-beta gene segment and expression of the EPHB6 gene that is conserved between mouse and human; and TCR sequence determinants of differentiation in developing thymocytes. As the size and scale of single-cell datasets continue to grow, we expect that CoNGA will prove to be a useful tool for deconvolving complex relationships between TCR sequence and cellular state in single-cell applications.


Sign in / Sign up

Export Citation Format

Share Document