scholarly journals Changes in audio-spatial working memory abilities during childhood: The role of spatial and phonological development

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260700
Author(s):  
Walter Setti ◽  
Luigi F. Cuturi ◽  
Giulio Sandini ◽  
Monica Gori

Working memory is a cognitive system devoted to storage and retrieval processing of information. Numerous studies on the development of working memory have investigated the processing of visuo-spatial and verbal non-spatialized information; however, little is known regarding the refinement of acoustic spatial and memory abilities across development. Here, we hypothesize that audio-spatial memory skills improve over development, due to strengthening spatial and cognitive skills such as semantic elaboration. We asked children aged 6 to 11 years old (n = 55) to pair spatialized animal calls with the corresponding animal spoken name. Spatialized sounds were emitted from an audio-haptic device, haptically explored by children with the dominant hand’s index finger. Children younger than 8 anchored their exploration strategy on previously discovered sounds instead of holding this information in working memory and performed worse than older peers when asked to pair the spoken word with the corresponding animal call. In line with our hypothesis, these findings demonstrate that age-related improvements in spatial exploration and verbal coding memorization strategies affect how children learn and memorize items belonging to a complex acoustic spatial layout. Similar to vision, audio-spatial memory abilities strongly depend on cognitive development in early years of life.

2010 ◽  
Vol 49 (4) ◽  
pp. 275 ◽  
Author(s):  
Ineke Imbo ◽  
Arnaud Szmalec ◽  
André Vandierendonck

2015 ◽  
Vol 223 (2) ◽  
pp. 102-109 ◽  
Author(s):  
Evelyn H. Kroesbergen ◽  
Marloes van Dijk

Recent research has pointed to two possible causes of mathematical (dis-)ability: working memory and number sense, although only few studies have compared the relations between working memory and mathematics and between number sense and mathematics. In this study, both constructs were studied in relation to mathematics in general, and to mathematical learning disabilities (MLD) in particular. The sample consisted of 154 children aged between 6 and 10 years, including 26 children with MLD. Children performing low on either number sense or visual-spatial working memory scored lower on math tests than children without such a weakness. Children with a double weakness scored the lowest. These results confirm the important role of both visual-spatial working memory and number sense in mathematical development.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2021 ◽  
Author(s):  
Vladislava Segen

The current study investigated a systematic bias in spatial memory in which people, following a perspective shift from encoding to recall, indicated the location of an object further to the direction of the shit. In Experiment 1, we documented this bias by asking participants to encode the position of an object in a virtual room and then indicate it from memory following a perspective shift induced by camera translation and rotation. In Experiment 2, we decoupled the influence of camera translations and camera rotations and examined also whether adding more information in the scene would reduce the bias. We also investigated the presence of age-related differences in the precision of object location estimates and the tendency to display the bias related to perspective shift. Overall, our results showed that camera translations led to greater systematic bias than camera rotations. Furthermore, the use of additional spatial information improved the precision with which object locations were estimated and reduced the bias associated with camera translation. Finally, we found that although older adults were as precise as younger participants when estimating object locations, they benefited less from additional spatial information and their responses were more biased in the direction of camera translations. We propose that accurate representation of camera translations requires more demanding mental computations than camera rotations, leading to greater uncertainty about the position of an object in memory. This uncertainty causes people to rely on an egocentric anchor thereby giving rise to the systematic bias in the direction of camera translation.


2018 ◽  
Vol 49 (4) ◽  
pp. 590-597 ◽  
Author(s):  
Rachel Muster ◽  
Saadia Choudhury ◽  
Wendy Sharp ◽  
Steven Kasparek ◽  
Gustavo Sudre ◽  
...  

AbstractBackgroundWhile the neuroanatomic substrates of symptoms of attention deficit hyperactivity disorder (ADHD) have been investigated, less is known about the neuroanatomic correlates of cognitive abilities pertinent to the disorder, particularly in adults. Here we define the neuroanatomic correlates of key cognitive abilities and determine if there are associations with histories of psychostimulant medication.MethodsWe acquired neuroanatomic magnetic resonance imaging data from 264 members of 60 families (mean age 29.5; s.d. 18.4, 116 with ADHD). Using linear mixed model regression, we tested for associations between cognitive abilities (working memory, information processing, intelligence, and attention), symptoms and both cortical and subcortical volumes.ResultsSymptom severity was associated with spatial working memory (t = −3.77, p = 0.0002), processing speed (t = −2.95, p = 0.004) and a measure of impulsive responding (t = 2.19, p = 0.03); these associations did not vary with age (all p > 0.1). Neuroanatomic associations of cognition varied by task but centered on prefrontal, lateral parietal and temporal cortical regions, the thalamus and putamen. The neuroanatomic correlates of ADHD symptoms overlapped significantly with those of working memory (Dice's overlap coefficient: spatial, p = 0.003; verbal, p = 0.001) and information processing (p = 0.02). Psychostimulant medication history was associated with neither cognitive skills nor with a brain–cognition relationships.ConclusionsDiagnostic differences in the cognitive profile of ADHD does not vary significantly with age; nor were cognitive differences associated with psychostimulant medication history. The neuroanatomic substrates of working memory and information overlapped with those for symptoms within these extended families, consistent with a pathophysiological role for these cognitive skills in familial ADHD.


2015 ◽  
Vol 28 (1) ◽  
pp. 109-119 ◽  
Author(s):  
Michela Zavagnin ◽  
Rossana De Beni ◽  
Erika Borella ◽  
Barbara Carretti

2019 ◽  
Author(s):  
S. C. Odell ◽  
F. Taki ◽  
S. Klein ◽  
R. J. Chen ◽  
O. B. Levine ◽  
...  

SummaryEpisodic memories are stored in distributed neurons but how eligibility of individual neurons to coding ensembles is determined remains elusive. We identified thousands of predominantly bistable (CpG methylated or unmethylated) regions within neuronal gene bodies, established during the development of the mouse hippocampal dentate gyrus. Reducing DNA methylation and the proportion of the methylated epialleles at bistable regions compromised novel context-induced neuronal activation and spatial memory. Conversely, increasing methylation and the frequency of the methylated epialleles at bistable regions enhanced intrinsic excitability and spatial memory but impaired spatial working memory, indicating that the developmentally established methylated-unmethylated epiallelic balance at bistable regions is essential for proper neuronal excitability and hippocampal cognitive functions. Single-nucleus profiling revealed the enrichment of specific epialleles from a subset of bistable regions, primarily exonic, in encoding neurons. We propose a model in which epigenetically bistable regions create neuron heterogeneity, and specific constellations of exonic epialleles dictate, via modulating neuronal excitability, eligibility to a coding ensemble.


2018 ◽  
Vol 23 (4) ◽  
pp. 344-354 ◽  
Author(s):  
Elizabeth M. Demeusy ◽  
Elizabeth D. Handley ◽  
Fred A. Rogosch ◽  
Dante Cicchetti ◽  
Sheree L. Toth

Previous research has provided evidence for the robust relation between maltreatment and the development of externalizing behavior, including aggression. However, less empirical attention has been given to the specific role of neglect. The current study aimed to examine the role of working memory in the association between early neglect and aggression in toddlerhood. Longitudinal data were collected from 89 infants and their biological mothers when the infant was approximately 12, 26, and 38 months old. History of neglect was assessed at 12 months using official Child Protective Service records. Working memory and mental development were assessed at 26 months. Aggression was measured using maternal report at 38 months. Data were analyzed using structural equation modeling, and mediation was tested using 95% asymmetric confidence intervals. Results indicated that infants who experienced neglect exhibited poorer working memory abilities, specifically spatial working memory, and higher rates of aggression in toddlerhood. In addition, spatial working memory mediated the relation between neglect and aggression, suggesting that this may be one promising target for intervention.


2016 ◽  
Author(s):  
David Landy ◽  
L. Elizabeth Crawford ◽  
Timothy A. Salthouse

Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intra-individual stability and inter-individual variation in these patterns of bias. In the current work we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals’ data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition.


Sign in / Sign up

Export Citation Format

Share Document