neuronal gene
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 44)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Huihui Qi ◽  
Li Luo ◽  
Caijing Lu ◽  
Runze Chen ◽  
Xianyao Zhou ◽  
...  

Vocalization is an essential medium for sexual and social signaling in birds and mammals. Periaqueductal gray (PAG) a conserved midbrain structure is believed to be responsible for innate vocalizations, but its molecular regulation remains largely unknown. Here, through a mouse forward genetic screening we identified one of the key Wnt/β-catenin effectors TCF7L2/TCF4 controls ultrasonic vocalization (USV) production and syllable complexity during maternal deprivation and sexual encounter. Expression of TCF7L2 in PAG excitatory neurons is necessary for the complex trait, while TCF7L2 loss reduces neuronal gene expressions and synaptic transmission in PAG. TCF7L2-mediated vocal control is independent of its β-catenin-binding domain but dependent of its DNA binding ability. Patient mutations associated with severe speech delay disrupt the transcriptional repression effect of TCF7L2, while mice carrying those mutations display severe USV impairments. Therefore, we conclude that TCF7L2 orchestrates gene expression in midbrain to control vocal production through a transcriptional repression mechanism.


Author(s):  
Charannya Sozheesvari Subhramanyam ◽  
Qiong Cao ◽  
Cheng Wang ◽  
Zealyn Shi-Lin Heng ◽  
Zhihong Zhou ◽  
...  

Author(s):  
Elisabetta Morini ◽  
Dadi Gao ◽  
Emily M. Logan ◽  
Monica Salani ◽  
Aram J. Krauson ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lisa-Marie Appel ◽  
Vedran Franke ◽  
Melania Bruno ◽  
Irina Grishkovskaya ◽  
Aiste Kasiliauskaite ◽  
...  

AbstractThe C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) is a regulatory hub for transcription and RNA processing. Here, we identify PHD-finger protein 3 (PHF3) as a regulator of transcription and mRNA stability that docks onto Pol II CTD through its SPOC domain. We characterize SPOC as a CTD reader domain that preferentially binds two phosphorylated Serine-2 marks in adjacent CTD repeats. PHF3 drives liquid-liquid phase separation of phosphorylated Pol II, colocalizes with Pol II clusters and tracks with Pol II across the length of genes. PHF3 knock-out or SPOC deletion in human cells results in increased Pol II stalling, reduced elongation rate and an increase in mRNA stability, with marked derepression of neuronal genes. Key neuronal genes are aberrantly expressed in Phf3 knock-out mouse embryonic stem cells, resulting in impaired neuronal differentiation. Our data suggest that PHF3 acts as a prominent effector of neuronal gene regulation by bridging transcription with mRNA decay.


Author(s):  
Sabyasachi Dash ◽  
Chandravanu Dash ◽  
Jui Pandhare

AbstractCocaine is a commonly abused drug worldwide. Acute as well as repeated exposure to cocaine activates persistent cellular and molecular changes in the brain reward regions. The effects of cocaine are predominantly mediated via alterations in neuronal gene expression by chromatin remodeling. Poly(ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation of chromatin has been reported as an important regulator of cocaine-mediated gene expression. PARP-1 dependent ADP-ribosylation is an energy-dependent process. In this study, we investigated the cellular energy response to cocaine-induced upregulation of PARP-1 expression. Exposure of differentiated SH-SY5Y cells to varying concentrations of cocaine resulted in the induction of PARP-1 dependent PARylation of p53 tumor suppressor. Further analysis revealed that PARylation of p53 by cocaine treatment resulted in nuclear accumulation of p53. However, induction and nuclear accumulation of p53 did not correlate with neuronal apoptosis/cell death upon cocaine exposure. Interestingly, cocaine-induced p53 PARylation resulted in the induction of proline oxidase (POX)—a p53 responsive gene involved in cellular metabolism. Given that cocaine-induced p53 PARylation is an energy-dependent process, we observed that cocaine-induced PARP-1/p53/POX axes alters cellular energy metabolism. Accordingly, using pharmacological and genetic studies of PARP-1, p53, and POX, we demonstrated the contribution of POX in maintaining cellular energy during neuronal function. Collectively, these studies highlight activation of a novel metabolic pathway in response to cocaine treatment.


2021 ◽  
Author(s):  
Alexandra Michurina ◽  
M. Sadman Sakib ◽  
Cemil Kerimoglu ◽  
Dennis Manfred Krueger ◽  
Lalit Kaurani ◽  
...  

Histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Amongst these enzymes SET domain containing 1b (SETD1B) has been linked to syndromic intellectual disability but its role in the postnatal brain has not been studied yet. Here we employ mice that lack Setd1b from excitatory neurons of the postnatal forebrain and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that SETD1B controls the expression of genes with a broad H3K4me3 peak at their promoters that represent neuronal enriched genes linked to learning and memory function. Comparative analysis to corresponding data from conditional Kmt2a and Kmt2b knockout mice suggests that this function is specific to SETD1B. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-mediated regulation of H3K4me levels in postnatal neurons is critical for cognitive function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoshi Ishikawa ◽  
Naohiro Nishida ◽  
Shiki Fujino ◽  
Takayuki Ogino ◽  
Hidekazu Takahashi ◽  
...  

AbstractEpithelial–mesenchymal transition (EMT) is a drastic phenotypic change during cancer metastasis and is one of the most important hallmarks of aggressive cancer. Although the overexpression of some specific transcription factors explains the functional alteration of EMT-induced cells, a complete picture of this biological process is yet to be elucidated. To comprehensively profile EMT-related genes in colorectal cancer, we quantified the EMT induction ability of each gene according to its similarity to the cancer stromal gene signature and termed it “mesenchymal score.” This bioinformatic approach successfully identified 90 candidate EMT mediators, which are strongly predictive of survival in clinical samples. Among these candidates, we discovered that the neuronal gene ARC, possibly originating from the retrotransposon, unexpectedly plays a crucial role in EMT induction. Profiling of novel EMT mediators we demonstrated here may help understand the complexity of the EMT program and open up new avenues for therapeutic intervention in colorectal cancer.


2021 ◽  
Vol 141 (5) ◽  
pp. S118
Author(s):  
Y. Miron ◽  
P.E. Miller ◽  
C. Hughes ◽  
E.A. Lerner ◽  
F. Cevikbas

2021 ◽  
Author(s):  
Mouhamed Alsaqati ◽  
Brittany A Davis ◽  
Jamie Wood ◽  
Megan Jones ◽  
Lora Jones ◽  
...  

SummaryGenetic evidence indicates disrupted epigenetic regulation as a major risk factor for psychiatric disorders, but the molecular mechanisms that drive this association are undetermined. EHMT1 is an epigenetic repressor that is causal for Kleefstra Syndrome (KS), a neurodevelopmental disorder (NDD) leading to ID, and is associated with schizophrenia. Here, we show that reduced EHMT1 activity decreases NRSF/REST protein leading to abnormal neuronal gene expression and progression of neurodevelopment in human iPSC. We further show that EHMT1 regulates NRSF/REST indirectly via repression of miRNA leading to aberrant neuronal gene regulation and neurodevelopment timing. Expression of a NRSF/REST mRNA that lacks the miRNA-binding sites restores neuronal gene regulation to EHMT1 deficient cells. Importantly, the EHMT1-regulated miRNA gene set with elevated expression is enriched for NRSF/REST regulators with an association for ID and schizophrenia. This reveals a molecular interaction between H3K9 dimethylation and NSRF/REST contributing to the aetiology of psychiatric disorders.


Sign in / Sign up

Export Citation Format

Share Document