scholarly journals Type I Interferon Upregulates Bak and Contributes to T Cell Loss during Human Immunodeficiency Virus (HIV) Infection

2013 ◽  
Vol 9 (10) ◽  
pp. e1003658 ◽  
Author(s):  
Joseph A. Fraietta ◽  
Yvonne M. Mueller ◽  
Guibin Yang ◽  
Alina C. Boesteanu ◽  
Donald T. Gracias ◽  
...  
2008 ◽  
Vol 83 (2) ◽  
pp. 884-895 ◽  
Author(s):  
Susanna Trapp ◽  
Nina R. Derby ◽  
Rachel Singer ◽  
Andrew Shaw ◽  
Vennansha G. Williams ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV) is taken up by and replicates in immature dendritic cells (imDCs), which can then transfer virus to T cells, amplifying the infection. Strategies known to boost DC function were tested for their ability to overcome this exploitation when added after HIV exposure. Poly(I:C), but not single-stranded RNA (ssRNA) or a standard DC maturation cocktail, elicited type I interferon (IFN) and interleukin-12 (IL-12) p70 production and the appearance of unique small (15- to 20-kDa) fragments of APOBEC3G (A3G) and impeded HIVBal replication in imDCs when added up to 60 h after virus exposure. Comparable effects were mediated by recombinant alpha/beta IFN (IFN-α/β). Neutralizing the anti-IFN-α/β receptor reversed poly(I:C)-induced inhibition of HIV replication and blocked the appearance of the small A3G proteins. The poly(I:C)-induced appearance of small A3G proteins was not accompanied by significant differences in A3G mRNA or A3G monomer expression. Small interfering RNA (siRNA) knockdown of A3G could not be used to reverse the poly(I:C)-induced protective effect, since siRNAs nonspecifically activated the DCs, inducing the appearance of the small A3G proteins and inhibiting HIV infection. Notably, the appearance of small A3G proteins coincided with the shift of high-molecular-mass inactive A3G complexes to the low-molecular-mass (LMM) active A3G complexes. The unique immune stimulation by poly(I:C) with its antiviral effects on imDCs marked by the expression of IFN-α/β and active LMM A3G renders poly(I:C) a promising novel strategy to combat early HIV infection in vivo.


2009 ◽  
Vol 84 (1) ◽  
pp. 340-351 ◽  
Author(s):  
Wuze Ren ◽  
Silvana Tasca ◽  
Ke Zhuang ◽  
Agegnehu Gettie ◽  
James Blanchard ◽  
...  

ABSTRACT We previously reported coreceptor switch in rhesus macaques inoculated intravenously with R5 simian-human immunodeficiency virus SF162P3N (SHIVSF162P3N). Whether R5-to-X4 virus evolution occurs in mucosally infected animals and in which anatomic site the switch occurs, however, were not addressed. We herein report a change in coreceptor preference in macaques infected intrarectally with SHIVSF162P3N. The switch occurred in infected animals with high levels of virus replication and undetectable antiviral antibody response and required sequence changes in the V3 loop of the gp120 envelope protein. X4 virus emergence was associated with an accelerated drop in peripheral CD4+ T-cell count but followed rather than preceded the onset of CD4+ T-cell loss. The conditions, genotypic requirements, and patterns of coreceptor switch in intrarectally infected animals were thus remarkably consistent with those found in macaques infected intravenously. They also overlapped with those reported for humans, suggestive of a common mechanism for coreceptor switch in the two hosts. Furthermore, two independent R5-to-X4 evolutionary pathways were identified in one infected animal, giving rise to dual-tropic and X4 viruses which differed in switch kinetics and tissue localization. The dual-tropic switch event predominated early, and the virus established infection in multiple tissues sites. In contrast, the switch to X4 virus occurred later, initiating and expanding mainly in peripheral lymph nodes. These findings help define R5 SHIVSF162P3N infection of rhesus macaques as a model to study the mechanistic basis, dynamics, and sites of HIV-1 coreceptor switch.


2005 ◽  
Vol 79 (5) ◽  
pp. 3195-3199 ◽  
Author(s):  
Jean-Daniel Lelièvre ◽  
Frédéric Petit ◽  
Damien Arnoult ◽  
Jean-Claude Ameisen ◽  
Jérôme Estaquier

ABSTRACT Fas-mediated T-cell death is known to occur during human immunodeficiency virus (HIV) infection. In this study, we found that HIV type 1 LAI (HIV-1LAI) primes CD8+ T cells from healthy donors for apoptosis, which occurs after Fas ligation. This effect is counteracted by a broad caspase inhibitor (zVAD-fmk). Fas-mediated cell death does not depend on CD8+ T-cell infection, because it occurred in the presence of reverse transcriptase inhibitors. However, purified CD8+ T cells are sensitive to Fas only in the presence of soluble CD4. Finally, we found that interleukin 7 (IL-7) increases Fas-mediated CD4+ and CD8+ T-cell death induced by HIV-1LAI. Since high levels of IL-7 are a marker of poor prognosis during HIV infection, our data suggest that enhancement of Fas-mediated T-cell death by HIV-1LAI and IL-7 is one of the mechanisms involved in progression to AIDS.


1994 ◽  
Vol 179 (2) ◽  
pp. 413-424 ◽  
Author(s):  
G Dadaglio ◽  
S Garcia ◽  
L Montagnier ◽  
M L Gougeon

We have analyzed the V beta usage by CD4+ and CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals in response to an in vitro stimulation with the superantigenic erythrogenic toxin A (ETA) of Streptococcus pyogenes. ETA amplifies specifically CD4+ and CD8+ T cells from control donors expressing the V beta 8 and the V beta 12 elements. When peripheral T cells from asymptomatic HIV-infected individuals were stimulated with ETA, there was a complete lack of activation of the V beta 8+ T cell subset, whereas the V beta 12+ T cell subset responded normally to the superantigen. This V beta-specific anergy, which was also observed in response to staphylococcal enterotoxin E (SEE), affected both CD4+ and CD8+ T cells and represented an intrinsic functional defect rather than a specific lack of response to bacterial superantigens since it was also observed after a stimulation with V beta 8 monoclonal antibodies. The V beta 8 anergic T cells did not express interleukin 2 receptors (IL-2Rs) and failed to proliferate in response to exogenous IL-2 or IL-4, suggesting that this anergy was not a reversible process, at least by the use of these cytokines. The unresponsiveness of the V beta 8 T cell subset is frequent since it was found in 56% of the patients studied, and comparison of the clinical status of responder vs. anergic patients indicated that the only known common factor between them was HIV infection. In addition, it is noteworthy that the anergy of the V beta 8 subset may be a very early phenomenon since it was found in a patient at Centers for Disease Control stage I of the disease. These data provide evidence that a dominant superantigen may be involved in the course of HIV infection and that the contribution of HIV has to be considered.


AIDS ◽  
2009 ◽  
Vol 23 (12) ◽  
pp. 1485-1494 ◽  
Author(s):  
Toshio Murakami ◽  
Yasuyuki Eda ◽  
Tadashi Nakasone ◽  
Yasushi Ami ◽  
Kenji Someya ◽  
...  

2006 ◽  
Vol 80 (21) ◽  
pp. 10591-10599 ◽  
Author(s):  
Tara M. Riddle ◽  
Norah J. Shire ◽  
Marc S. Sherman ◽  
Kelly F. Franco ◽  
Haynes W. Sheppard ◽  
...  

ABSTRACT We examined the rates of variant population turnover of the V1-V2 and V4-V5 hypervariable domains of the human immunodeficiency virus type 1 (HIV-1) gp120 molecule in longitudinal plasma samples from 14 men with chronic HIV-1 infection using heteroduplex tracking assays (HTA). Six men had high rates of CD4+ T-cell loss, and eight men had low rates of CD4+ T-cell loss over 2.5 to 8 years of infection. We found that V1-V2 and V4-V5 env populations changed dramatically over time in all 14 subjects; the changes in these regions were significantly correlated with each another over time. The subjects with rapid CD4 loss had significantly less change in their env populations than the subjects with slow CD4 loss. The two subjects with rapid CD4 loss and sustained low CD4 counts (<150/μl for at least 2 years) showed stabilization of their V1-V2 and V4-V5 populations as reflected by low levels of total change in HTA pattern and low HTA indices (a novel measure of the emergence of new bands and band distribution); this stabilization was not observed in other subjects. The stabilization of env variant populations at low CD4 counts following periods of rapid viral evolution suggests that selective pressure on env, likely from new immune responses, is minimal when CD4 counts drop dramatically and remain low for extended periods of time.


2006 ◽  
Vol 80 (16) ◽  
pp. 8236-8247 ◽  
Author(s):  
Moraima Guadalupe ◽  
Sumathi Sankaran ◽  
Michael D. George ◽  
Elizabeth Reay ◽  
David Verhoeven ◽  
...  

ABSTRACT Although the gut-associated lymphoid tissue (GALT) is an important early site for human immunodeficiency virus (HIV) replication and severe CD4+ T-cell depletion, our understanding is limited about the restoration of the gut mucosal immune system during highly active antiretroviral therapy (HAART). We evaluated the kinetics of viral suppression, CD4+ T-cell restoration, gene expression, and HIV-specific CD8+ T-cell responses in longitudinal gastrointestinal biopsy and peripheral blood samples from patients initiating HAART during primary HIV infection (PHI) or chronic HIV infection (CHI) using flow cytometry, real-time PCR, and DNA microarray analysis. Viral suppression was more effective in GALT of PHI patients than CHI patients during HAART. Mucosal CD4+ T-cell restoration was delayed compared to peripheral blood and independent of the time of HAART initiation. Immunophenotypic analysis showed that repopulating mucosal CD4+ T cells were predominantly of a memory phenotype and expressed CD11α, αEβ7, CCR5, and CXCR4. Incomplete suppression of viral replication in GALT during HAART correlated with increased HIV-specific CD8+ T-cell responses. DNA microarray analysis revealed that genes involved in inflammation and cell activation were up regulated in patients who did not replenish mucosal CD4+ T cells efficiently, while expression of genes involved in growth and repair was increased in patients with efficient mucosal CD4+ T-cell restoration. Our findings suggest that the discordance in CD4+ T-cell restoration between GALT and peripheral blood during therapy can be attributed to the incomplete viral suppression and increased immune activation and inflammation that may prevent restoration of CD4+ T cells and the gut microenvironment.


Sign in / Sign up

Export Citation Format

Share Document