scholarly journals Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA

2017 ◽  
Vol 13 (4) ◽  
pp. e1006296 ◽  
Author(s):  
Yuanjie Liu ◽  
Hui Nie ◽  
Richeng Mao ◽  
Bidisha Mitra ◽  
Dawei Cai ◽  
...  
1999 ◽  
Vol 73 (7) ◽  
pp. 5767-5776 ◽  
Author(s):  
Tilman Heise ◽  
Luca G. Guidotti ◽  
Francis V. Chisari

ABSTRACT We recently identified three nuclear proteins (p45, p39, and p26) that bind to a 91-nucleotide (nt) RNA element between nt 1243 and 1333 in hepatitis B virus (HBV) RNA, and we showed that these proteins and HBV RNA are regulated coordinately by gamma interferon and tumor necrosis factor alpha. Purification and sequence analysis of tryptic peptides obtained from p39 revealed sequence homology to the mouse La protein. Immunoprecipitation experiments showed that p45, p39, and p26 were recognized by anti-La-specific antiserum, indicating that p45 is the full-length La protein and that p39 and p26 are likely to be proteolytic La cleavage products. Furthermore, in competition experiments we found that all three La proteins bind, in a phosphorylation-dependent manner, to the same predicted stem-loop structure located between nt 1275 and 1291 of HBV, withKd s of approximately 1.0 nM. Collectively, these results support the notion that the La protein may contribute to HBV RNA stability, constitutively and in response to inflammatory cytokines.


2021 ◽  
Author(s):  
Richeng Mao ◽  
Minhui Dong ◽  
Zhongliang Shen ◽  
Hu Zhang ◽  
Yuanjie Liu ◽  
...  

DDX17 is a member of the DEAD-Box helicase family proteins involved in cellular RNA folding, splicing, and translation. It has been reported that DDX17 serves as a co-factor of host zinc finger antiviral protein (ZAP)-mediated retroviral RNA degradation and exerts direct antiviral function against Raft Valley Fever Virus though binding to specific stem-loop structures of viral RNA. Intriguingly, we have previously shown that ZAP inhibits Hepatitis B virus (HBV) replication through promoting viral RNA decay, and the ZAP-responsive element (ZRE) of HBV pregenomic RNA (pgRNA) contains a stem-loop structure, specifically epsilon, which serves as the packaging signal for pgRNA encapsidation. In this study, we demonstrated that the endogenous DDX17 is constitutively expressed in human hepatocyte-derived cells but dispensable for ZAP-mediated HBV RNA degradation. However, DDX17 was found to inhibit HBV replication primarily by reducing the level of cytoplasmic encapsidated pgRNA in a helicase-dependent manner. Immunofluorescence assay revealed that DDX17 could gain access to cytoplasm from nucleus in the presence of HBV RNA. In addition, RNA immunoprecipitation and electrophoretic mobility shift assays demonstrated that the enzymatically active DDX17 competes with HBV polymerase to bind to pgRNA at the 5’ epsilon motif. In summary, our study suggests that DDX17 serves as an intrinsic host restriction factor against HBV through interfering with pgRNA encapsidation. IMPORTANCE Hepatitis B virus (HBV) chronic infection, a long-studied but yet incurable disease, remains a major public health concern worldwide. Given that HBV replication cycle highly depends on host factors, deepening our understanding of the host-virus interaction is thus of great significance in the journey of finding a cure. In eukaryotic cells, RNA helicases of DEAD-box family are highly conserved enzymes involved in diverse processes of cellular RNA metabolism. Emerging data have shown that DDX17, a typical member of DEAD box family, functions as an antiviral factor through interacting with viral RNA. In this study, we, for the first time, demonstrate that DDX17 inhibits HBV through blocking the formation of viral replication complex, which not only broadens the antiviral spectrum of DDX17, but also provides new insight into the molecular mechanism of DDX17-mediated virus-host interaction.


2006 ◽  
Vol 87 (7) ◽  
pp. 1977-1983 ◽  
Author(s):  
Nancy Beerens ◽  
Eric J. Snijder

RNA virus genomes contain cis-acting sequences and structural elements involved in virus replication. Both full-length and subgenomic negative-strand RNA synthesis are initiated at the 3′ terminus of the positive-strand genomic RNA of Equine arteritis virus (EAV). To investigate the molecular mechanism of EAV RNA synthesis, the RNA secondary structure of the 3′-proximal region of the genome was analysed by chemical and enzymic probing. Based on the RNA secondary structure model derived from this analysis, several deletions were engineered in a full-length cDNA copy of the viral genome. Two RNA domains were identified that are essential for virus replication and most likely play a key role in viral RNA synthesis. The first domain, located directly upstream of the 3′ untranslated region (UTR) (nt 12610–12654 of the genome), is mainly single-stranded but contains one small stem–loop structure. The second domain is located within the 3′ UTR (nt 12661–12690) and folds into a prominent stem–loop structure with a large loop region. The location of this stem–loop structure near the 3′ terminus of the genome suggests that it may act as a recognition signal during the initiation of minus-strand RNA synthesis.


2001 ◽  
Vol 75 (17) ◽  
pp. 8021-8030 ◽  
Author(s):  
Jun Sasaki ◽  
Yasuhiro Kusuhara ◽  
Yoshimasa Maeno ◽  
Nobumichi Kobayashi ◽  
Teruo Yamashita ◽  
...  

ABSTRACT Aichi virus is the type species of a new genus,Kobuvirus, of the family Picornaviridae. In this study, we constructed a full-length cDNA clone of Aichi virus whose in vitro transcripts were infectious to Vero cells. During construction of the infectious cDNA clone, a novel sequence of 32 nucleotides was identified at the 5′ end of the genome. Computer-assisted prediction of the secondary structure of the 5′ end of the genome, including the novel sequence, suggested the formation of a stable stem-loop structure consisting of 42 nucleotides. The function of this stem-loop in virus replication was investigated using various site-directed mutants derived from the infectious cDNA clone. Our data indicated that correct folding of the stem-loop at the 5′ end of the positive strand, but not at the 3′ end of the negative strand, is critical for viral RNA replication. The primary sequence in the lower part of the stem was also suggested to be crucial for RNA replication. In contrast, nucleotide changes in the loop segment did not so severely reduce the efficiency of virus replication. A double mutant, in which both nucleotide stretches of the middle part of the stem were replaced by their complementary nucleotides, had efficient RNA replication and translation abilities but was unable to produce viruses. These results indicate that the stem-loop at the 5′ end of the Aichi virus genome is an element involved in both viral RNA replication and production of infectious virus particles.


Sign in / Sign up

Export Citation Format

Share Document