scholarly journals Cell type- and replication stage-specific influenza virus responses in vivo

2020 ◽  
Vol 16 (8) ◽  
pp. e1008760
Author(s):  
Elizabeth J. Fay ◽  
Stephanie L. Aron ◽  
Marissa G. Macchietto ◽  
Matthew W. Markman ◽  
Katharina Esser-Nobis ◽  
...  
Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


2018 ◽  
Author(s):  
J. Darr ◽  
M. Lassi ◽  
R. Gerlini ◽  
F. Scheid ◽  
M. Hrabě de Angelis ◽  
...  
Keyword(s):  

1980 ◽  
Vol 45 (5) ◽  
pp. 1595-1600 ◽  
Author(s):  
Jaroslav Sluka ◽  
František Šmejkal ◽  
Zdeněk Buděšínský

On recation of cyclooctylamine with the sulfate of S-methylisothiourea cyclooctylguanidine was formed which was acylated with the methyl esters of 5-halogeno- and 3,5-dihalogeno-2-alkoxybenzoic acids. The 1-acyl-3-cyclooctylguanidine I-XVII formed were tested for their antiviral effect against the influenza virus A/NWS, A-PR8 and A2 Singapore, and further against the viruses NDV, herpes 2, vaccinia and WEE. In the in vivo test against the influenza virus A2 Singapore and herpes simplex 1-(5-bromo-2-dodecyloxybenzoyl)-3-cyclooctylguanidine is more active and less toxic than cyclooctylamine and 1-cyclooctylguanidine.


2021 ◽  
pp. 0271678X2110103
Author(s):  
Nao Hatakeyama ◽  
Miyuki Unekawa ◽  
Juri Murata ◽  
Yutaka Tomita ◽  
Norihiro Suzuki ◽  
...  

A variety of brain cells participates in neurovascular coupling by transmitting and modulating vasoactive signals. The present study aimed to probe cell type-dependent cerebrovascular (i.e., pial and penetrating arterial) responses with optogenetics in the cortex of anesthetized mice. Two lines of the transgenic mice expressing a step function type of light-gated cation channel (channelrhodopsine-2; ChR2) in either cortical neurons (muscarinic acetylcholine receptors) or astrocytes (Mlc1-positive) were used in the experiments. Photo-activation of ChR2-expressing astrocytes resulted in a widespread increase in cerebral blood flow (CBF), extending to the nonstimulated periphery. In contrast, photo-activation of ChR2-expressing neurons led to a relatively localized increase in CBF. The differences in the spatial extent of the CBF responses are potentially explained by differences in the involvement of the vascular compartments. In vivo imaging of the cerebrovascular responses revealed that ChR2-expressing astrocyte activation led to the dilation of both pial and penetrating arteries, whereas ChR2-expressing neuron activation predominantly caused dilation of the penetrating arterioles. Pharmacological studies showed that cell type-specific signaling mechanisms participate in the optogenetically induced cerebrovascular responses. In conclusion, pial and penetrating arterial vasodilation were differentially evoked by ChR2-expressing astrocytes and neurons.


2019 ◽  
Vol 56 ◽  
pp. 160-166 ◽  
Author(s):  
Jelle van den Ameele ◽  
Robert Krautz ◽  
Andrea H Brand
Keyword(s):  

Reproduction ◽  
2007 ◽  
Vol 133 (1) ◽  
pp. 219-230 ◽  
Author(s):  
Feikun Yang ◽  
Ru Hao ◽  
Barbara Kessler ◽  
Gottfried Brem ◽  
Eckhard Wolf ◽  
...  

The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres fromin vivofertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF,P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that inin vivofertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres fromin vivoderived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and may be a useful epigenetic mark to predict efficiency of SCNT in rabbits.


Sign in / Sign up

Export Citation Format

Share Document