Differential pial and penetrating arterial responses examined by optogenetic activation of astrocytes and neurons

2021 ◽  
pp. 0271678X2110103
Author(s):  
Nao Hatakeyama ◽  
Miyuki Unekawa ◽  
Juri Murata ◽  
Yutaka Tomita ◽  
Norihiro Suzuki ◽  
...  

A variety of brain cells participates in neurovascular coupling by transmitting and modulating vasoactive signals. The present study aimed to probe cell type-dependent cerebrovascular (i.e., pial and penetrating arterial) responses with optogenetics in the cortex of anesthetized mice. Two lines of the transgenic mice expressing a step function type of light-gated cation channel (channelrhodopsine-2; ChR2) in either cortical neurons (muscarinic acetylcholine receptors) or astrocytes (Mlc1-positive) were used in the experiments. Photo-activation of ChR2-expressing astrocytes resulted in a widespread increase in cerebral blood flow (CBF), extending to the nonstimulated periphery. In contrast, photo-activation of ChR2-expressing neurons led to a relatively localized increase in CBF. The differences in the spatial extent of the CBF responses are potentially explained by differences in the involvement of the vascular compartments. In vivo imaging of the cerebrovascular responses revealed that ChR2-expressing astrocyte activation led to the dilation of both pial and penetrating arteries, whereas ChR2-expressing neuron activation predominantly caused dilation of the penetrating arterioles. Pharmacological studies showed that cell type-specific signaling mechanisms participate in the optogenetically induced cerebrovascular responses. In conclusion, pial and penetrating arterial vasodilation were differentially evoked by ChR2-expressing astrocytes and neurons.

2017 ◽  
Author(s):  
Mari Mito ◽  
Mitsutaka Kadota ◽  
Kaori Tanaka ◽  
Yasuhide Furuta ◽  
Kuniya Abe ◽  
...  

AbstractBackgroundThe nervous system of higher eukaryotes is composed of numerous types of neurons and glia that together orchestrate complex neuronal responses. However, this complex pool of cells typically poses analytical challenges in investigating gene expression profiles and their epigenetic basis for specific cell types. Here, we developed a novel method that enables cell type-specific analyses of epigenetic modifications using tandem chromatin immunoprecipitation sequencing (tChIP-Seq).ResultsFLAG-tagged histone H2B, a constitutive chromatin component, was first expressed in Camk2a-positive pyramidal cortical neurons and used to purify chromatin in a cell type-specific manner. Subsequent chromatin immunoprecipitation using antibodies against H3K4me3—an active promoter mark—allowed us to survey neuron-specific coding and non-coding transcripts. Indeed, tChIP-Seq identified hundreds of genes associated with neuronal functions and genes with unknown functions expressed in cortical neurons.ConclusionstChIP-Seq thus provides a versatile approach to investigating the epigenetic modifications of particular cell types in vivo.


2018 ◽  
Author(s):  
J. Darr ◽  
M. Lassi ◽  
R. Gerlini ◽  
F. Scheid ◽  
M. Hrabě de Angelis ◽  
...  
Keyword(s):  

2019 ◽  
Vol 56 ◽  
pp. 160-166 ◽  
Author(s):  
Jelle van den Ameele ◽  
Robert Krautz ◽  
Andrea H Brand
Keyword(s):  

1995 ◽  
Vol 352 (5) ◽  
pp. 469-476 ◽  
Author(s):  
Martina Schmidt ◽  
Christine Bienek ◽  
Chris J. van Koppen ◽  
Martin C. Michel ◽  
Karl H. Jakobs

1992 ◽  
Vol 12 (4) ◽  
pp. 562-570 ◽  
Author(s):  
Hans W. Müller-Gärtner ◽  
Alan A. Wilson ◽  
Robert F. Dannals ◽  
Henry N. Wagner ◽  
J. James Frost

A method to image muscarinic acetylcholine receptors (muscarinic receptors) noninvasively in human brain in vivo was developed using [123I]4-iododexetimide ([123I]IDex), [123I]4-iodolevetimide ([123I]ILev), and single photon emission computed tomography (SPECT). [123I]IDex is a high-affinity muscarinic receptor antagonist. [123I]ILev is its pharmacologically inactive enantiomer and measures nonspecific binding of [123I]IDex in vitro. Regional brain activity after tracer injection was measured in four young normal volunteers for 24 h. Regional [123I]IDex and [123I]ILev activities were correlated early after injection, but not after 1.5 h. [123I]IDex activity increased over 7–12 h in neocortex, neostriatum, and thalamus, but decreased immediately after the injection peak in cerebellum. [123I]IDex activity was highest in neostriatum, followed in rank order by neocortex, thalamus, and cerebellum. [123I]IDex activity correlated with muscarinic receptor concentrations in matching brain regions. In contrast, [123I]ILev activity decreased immediately after the injection peak in all brain regions and did not correspond to muscarinic receptor concentrations. [123I]IDex activity in neocortex and neostriatum during equilibrium was six to seven times higher than [123I]ILev activity. The data demonstrate that [123I]IDex binds specifically to muscarinic receptors in vivo, whereas [123I]ILev represents the nonspecific part of [123I]IDex binding. Subtraction of [123I]ILev from [123I]IDex images on a pixel-by-pixel basis therefore reflects specific [123I]IDex binding to muscarinic receptors. Owing to its high specific binding, [123I]IDex has the potential to measure small changes in muscarinic receptor characteristics in vivo with SPECT. The use of stereoisomerism directly to measure nonspecific binding of [123I]IDex in vivo may reduce complexity in modeling approaches to muscarinic acetylcholine receptors in human brain.


2021 ◽  
Author(s):  
Moataz Dowaidar

Autophagy is a double-edged sword in cancer, and numerous aspects should be taken into account before deciding on the most effective strategy to target the process. The fact that several clinical studies are now ongoing does not mean that the patient group that may benefit from autophagy-targeting medicines has been identified. Autophagy inhibitors that are more potent and specialized, as well as autophagy indicators, are also desperately required. The fact that these inhibitors only work against tumors that rely on autophagy for survival (RAS mutants) makes it difficult to distinguish them from tumors that continue to develop even when autophagy is absent. Furthermore, mutations such as BRAF have been shown to make tumors more susceptible to autophagy suppression, suggesting that targeting such tumours may be a viable strategy for overcoming their chemotherapy resistance. In the meantime, we are unable to identify if autophagy regulation works in vivo or whether it selectively targets a disease while inflicting injury to other healthy organs and tissues. A cell-type-specific impact appears to be observed with such therapy. As a result, it is just as important to consider the differences between tumors that originate in different organs as it is to consider the signaling pathways that are similar across them. For a therapy or cure to be effective, the proposed intervention must be tailored to the specific needs of each patient.Over the last several years, a growing amount of data has implicated autophagy in a variety of disorders, including cancer. In normal cells, this catabolic process is also required for cell survival and homeostasis. Despite the fact that medications targeting intermediates in the autophagy signaling pathway are being created and evaluated at both the preclinical and clinical levels, given the complicated function of autophagy in cancer, we still have a long way to go in terms of establishing an effective therapeutic approach. This article discusses current tactics for exploiting cancer cells' autophagy dependency, as well as obstacles in the area. We believe that the unanswered concerns raised in this work will stimulate researchers to investigate previously unknown connections between autophagy and other signaling pathways, which might lead to the development of novel, highly specialized autophagy therapies.


Sign in / Sign up

Export Citation Format

Share Document