scholarly journals Safe and effective two-in-one replicon-and-VLP minispike vaccine for COVID-19: Protection of mice after a single immunization

2021 ◽  
Vol 17 (4) ◽  
pp. e1009064
Author(s):  
Alexandru A. Hennrich ◽  
Bevan Sawatsky ◽  
Rosalía Santos-Mandujano ◽  
Dominic H. Banda ◽  
Martina Oberhuber ◽  
...  

Vaccines of outstanding efficiency, safety, and public acceptance are needed to halt the current SARS-CoV-2 pandemic. Concerns include potential side effects caused by the antigen itself and safety of viral DNA and RNA delivery vectors. The large SARS-CoV-2 spike (S) protein is the main target of current COVID-19 vaccine candidates but can induce non-neutralizing antibodies, which might cause vaccination-induced complications or enhancement of COVID-19 disease. Besides, encoding of a functional S in replication-competent virus vector vaccines may result in the emergence of viruses with altered or expanded tropism. Here, we have developed a safe single round rhabdovirus replicon vaccine platform for enhanced presentation of the S receptor-binding domain (RBD). Structure-guided design was employed to build a chimeric minispike comprising the globular RBD linked to a transmembrane stem-anchor sequence derived from rabies virus (RABV) glycoprotein (G). Vesicular stomatitis virus (VSV) and RABV replicons encoding the minispike not only allowed expression of the antigen at the cell surface but also incorporation into the envelope of secreted non-infectious particles, thus combining classic vector-driven antigen expression and particulate virus-like particle (VLP) presentation. A single dose of a prototype replicon vaccine complemented with VSV G, VSVΔG-minispike-eGFP (G), stimulated high titers of SARS-CoV-2 neutralizing antibodies in mice, equivalent to those found in COVID-19 patients, and protected transgenic K18-hACE2 mice from COVID-19-like disease. Homologous boost immunization further enhanced virus neutralizing activity. The results demonstrate that non-spreading rhabdovirus RNA replicons expressing minispike proteins represent effective and safe alternatives to vaccination approaches using replication-competent viruses and/or the entire S antigen.

2020 ◽  
Author(s):  
Alexandru A. Hennrich ◽  
Dominic H. Banda ◽  
Martina Oberhuber ◽  
Anika Schopf ◽  
Verena Pfaffinger ◽  
...  

SummaryThe large SARS-CoV-2 spike (S) protein is the main target of current COVID-19 vaccine candidates but can induce non-neutralizing antibodies, which may cause vaccination-induced complications or enhancement of COVID-19 disease. Besides, encoding of a functional S in replication-competent virus vector vaccines may result in the emergence of viruses with altered or expanded tropism. Here, we have developed a safe single round rhabdovirus replicon vaccine platform for enhanced presentation of the S receptor-binding domain (RBD). Structure-guided design was employed to build a chimeric minispike comprising the globular RBD linked to a transmembrane stem-anchor sequence derived from rabies virus (RABV) glycoprotein (G). Vesicular stomatitis virus (VSV) and RABV replicons encoding the minispike not only allowed expression of the antigen at the cell surface but also incorporation into the envelope of secreted non-infectious particles, thus combining classic vector-driven antigen expression and particulate virus-like particle (VLP) presentation. A single dose of a prototype replicon vaccine, VSVΔG-minispike-eGFP (G), stimulated high titers of SARS-CoV-2 neutralizing antibodies in mice, equivalent to those found in COVID-19 patients. Boost immunization with the identical replicon further enhanced neutralizing activity. These results demonstrate that rhabdovirus minispike replicons represent effective and safe alternatives to vaccination approaches using replication-competent viruses and/or the entire S antigen.HighlightsSARS-CoV-2 S RBD antigen is preferred over entire S to preclude potential disease enhancing antibodiesconstruction of a chimeric rhabdovirus minispike protein presenting RBD in native conformationconstruction of single round VSV and rabies virus replicon vaccinespresentation of minispike antigen on cells and on noninfectious VLPsstrong induction of SARS-CoV-2 neutralizing antibodies by the VSV replicon/VLP system in vaccinated mice


2021 ◽  
Author(s):  
Phillip Hicks ◽  
Jonna B. Westover ◽  
Tomaz B Manzoni ◽  
Brianne Roper ◽  
Gabrielle L Rock ◽  
...  

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a recently emerged tickborne virus in east Asia with over 8,000 confirmed cases. With a high case fatality ratio, SFTSV has been designated a high priority pathogen by the WHO and the NIAID. Despite this, there are currently no approved therapies or vaccines to treat or prevent SFTS. Vesicular stomatitis virus (VSV) represents an FDA-approved vaccine platform that has been considered for numerous viruses due to its low sero-prevalence in humans, ease in genetic manipulation and promiscuity in incorporating foreign glycoproteins into its virions. In this study, we developed a recombinant VSV (rVSV) expressing the SFTSV glycoproteins Gn/Gc (rVSV-SFTSV) and assessed its safety, immunogenicity and efficacy in mice. We demonstrate that rVSV-SFTSV is safe when given to immunocompromised animals and is not neuropathogenic when injected intracranially into young immunocompetent mice. Immunization of Ifnar-/- mice with rVSV-SFTSV resulted in high levels of neutralizing antibodies and protection against lethal SFTSV challenge. Additionally, passive transfer of sera from immunized IFNAR-/- mice into naïve animals was protective when given pre- or post-exposure. Finally, we demonstrate that immunization with rVSV-SFTSV cross protects mice against challenge with the closely related Heartland virus despite low neutralizing titers to the virus. Taken together, these data suggest that rVSV-SFTSV is a promising vaccine candidate.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 765
Author(s):  
Alemu Tekewe Mogus ◽  
Lihong Liu ◽  
Manxue Jia ◽  
Diane T. Ajayi ◽  
Kai Xu ◽  
...  

Broadly neutralizing antibodies (bnAbs) isolated from HIV-infected individuals delineate vulnerable sites on the HIV envelope glycoprotein that are potential vaccine targets. A linear epitope within the N-terminal region of the HIV-1 fusion peptide (FP8) is the primary target of VRC34.01, a bnAb that neutralizes ~50% of primary HIV isolates. FP8 has attracted attention as a potential HIV vaccine target because it is a simple linear epitope. Here, platform technologies based on RNA bacteriophage virus-like particles (VLPs) were used to develop multivalent vaccines targeting the FP8 epitope. Both recombinant MS2 VLPs displaying the FP8 peptide and Qβ VLPs displaying chemically conjugated FP8 peptide induced high titers of FP8-specific antibodies in mice. Moreover, a heterologous prime-boost-boost regimen employing the two FP8-VLP vaccines and native envelope trimer was the most effective approach for eliciting HIV-1 neutralizing antibodies. Given the potent immunogenicity of VLP-based vaccines, this vaccination strategy—inspired by bnAb-guided epitope mapping, VLP bioengineering, and prime-boost immunization approaches—may be a useful strategy for eliciting bnAb responses against HIV.


2021 ◽  
Vol 9 (12) ◽  
pp. 2414
Author(s):  
Krista G. Freeman ◽  
Katherine S. Wetzel ◽  
Yu Zhang ◽  
Kira M. Zack ◽  
Deborah Jacobs-Sera ◽  
...  

The explosion of SARS-CoV-2 infections in 2020 prompted a flurry of activity in vaccine development and exploration of various vaccine platforms, some well-established and some new. Phage-based vaccines were described previously, and we explored the possibility of using mycobacteriophages as a platform for displaying antigens of SARS-CoV-2 or other infectious agents. The potential advantages of using mycobacteriophages are that a large and diverse variety of them have been described and genomically characterized, engineering tools are available, and there is the capacity to display up to 700 antigen copies on a single particle approximately 100 nm in size. The phage body may itself be a good adjuvant, and the phages can be propagated easily, cheaply, and to high purity. Furthermore, the recent use of these phages therapeutically, including by intravenous administration, suggests an excellent safety profile, although efficacy can be restricted by neutralizing antibodies. We describe here the potent immunogenicity of mycobacteriophage Bxb1, and Bxb1 recombinants displaying SARS-CoV-2 Spike protein antigens.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 59 ◽  
Author(s):  
Wilmschen ◽  
Schneider ◽  
Peters ◽  
Bayer ◽  
Issmail ◽  
...  

The respiratory syncytial virus (RSV) is one major cause of lower respiratory tract infections in childhood and an effective vaccine is still not available. We previously described a new rhabdoviral vector vaccine, VSV-GP, a variant of the vesicular stomatitis virus (VSV), where the VSV glycoprotein G is exchanged by the glycoprotein GP of the lymphocytic choriomeningitis virus. Here, we evaluated VSV-GP as vaccine vector for RSV with the aim to induce RSV neutralizing antibodies. Wild-type F (Fwt) or a codon optimized version (Fsyn) were introduced at position 5 into the VSV-GP genome. Both F versions were efficiently expressed in VSV-GP-F infected cells and incorporated into VSV-GP particles. In mice, high titers of RSV neutralizing antibodies were induced already after prime and subsequently boosted by a second immunization. After challenge with RSV, viral loads in the lungs of immunized mice were reduced by 2–3 logs with no signs of an enhanced disease induced by the vaccination. Even a single intranasal immunization significantly reduced viral load by a factor of more than 100-fold. RSV neutralizing antibodies were long lasting and mice were still protected when challenged 20 weeks after the boost. Therefore, VSV-GP is a promising candidate for an effective RSV vaccine.


2008 ◽  
Vol 89 (6) ◽  
pp. 1352-1363 ◽  
Author(s):  
Laurent Gillet ◽  
Susanna Colaco ◽  
Philip G. Stevenson

Herpesviruses are ancient pathogens that infect all vertebrates. The most conserved component of their entry machinery is glycoprotein B (gB), yet how gB functions is unclear. A striking feature of the murid herpesvirus 4 (MuHV-4) gB is its resistance to neutralization. Here, we show by direct visualization of infected cells that the MuHV-4 gB changes its conformation between extracellular virions and those in late endosomes, where capsids are released. Specifically, epitopes on its N-terminal cell-binding domain become inaccessible, whilst non-N-terminal epitopes are revealed, consistent with structural changes reported for the vesicular stomatitis virus glycoprotein G. Inhibitors of endosomal acidification blocked the gB conformation switch. They also blocked capsid release and the establishment of infection, implying that the gB switch is a key step in entry. Neutralizing antibodies could only partially inhibit the switch. Their need to engage a less vulnerable, upstream form of gB, because its fusion form is revealed only in endosomes, helps to explain why gB-directed MuHV-4 neutralization is so difficult.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010092
Author(s):  
Gyoung Nyoun Kim ◽  
Jung-ah Choi ◽  
Kunyu Wu ◽  
Nasrin Saeedian ◽  
Eunji Yang ◽  
...  

The development of safe and effective vaccines to prevent SARS-CoV-2 infections remains an urgent priority worldwide. We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 vaccine candidate. We have constructed VSV genomes carrying exogenous genes resulting in the production of avirulent rVSV carrying the full-length spike protein (SF), the S1 subunit, or the receptor-binding domain (RBD) plus envelope (E) protein of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) to the N-terminus enhanced the protein expression, and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) enhanced protein incorporation into pseudotype VSV. All rVSVs expressed three different forms of SARS-CoV-2 spike proteins, but chimeras with VSV-Gtc demonstrated the highest rVSV-associated expression. In immunized mice, rVSV with chimeric S protein-Gtc derivatives induced the highest level of potent neutralizing antibodies and T cell responses, and rVSV harboring the full-length msp-SF-Gtc proved to be the superior immunogen. More importantly, rVSV-msp-SF-Gtc vaccinated animals were completely protected from a subsequent SARS-CoV-2 challenge. Overall, we have developed an efficient strategy to induce a protective response in SARS-CoV-2 challenged immunized mice. Vaccination with our rVSV-based vector may be an effective solution in the global fight against COVID-19.


2015 ◽  
Vol 2 (3) ◽  
Author(s):  
Jonathan D. Fuchs ◽  
Ian Frank ◽  
Marnie L. Elizaga ◽  
Mary Allen ◽  
Nicole Frahm ◽  
...  

Abstract Background.  We report the first-in-human safety and immunogenicity evaluation of a highly attenuated, replication-competent recombinant vesicular stomatitis virus (rVSV) human immunodeficiency virus (HIV)-1 vaccine. Methods.  Sixty healthy, HIV-1-uninfected adults were enrolled in a randomized, double-blinded, placebo-controlled dose-escalation study. Groups of 12 participants received rVSV HIV-1 gag vaccine at 5 dose levels (4.6 × 103 to 3.4 × 107 particle forming units) (N = 10/group) or placebo (N = 2/group), delivered intramuscularly as bilateral injections at 0 and 2 months. Safety monitoring included VSV cultures from blood, urine, saliva, and swabs of oral lesions. Vesicular stomatitis virus-neutralizing antibodies, T-cell immunogenicity, and HIV-1 specific binding antibodies were assessed. Results.  Local and systemic reactogenicity symptoms were mild to moderate and increased with dose. No severe reactogenicity or product-related serious adverse events were reported, and all rVSV cultures were negative. All vaccine recipients became seropositive for VSV after 2 vaccinations. gag-specific T-cell responses were detected in 63% of participants by interferon-γ enzyme-linked immunospot at the highest dose post boost. Conclusions.  An attenuated replication-competent rVSV gag vaccine has an acceptable safety profile in healthy adults. This rVSV vector is a promising new vaccine platform for the development of vaccines to combat HIV-1 and other serious human diseases.


2020 ◽  
Author(s):  
Alemu Tekewe Mogus ◽  
Lihong Liu ◽  
Manxue Jia ◽  
Diane T. Ajayi ◽  
Kai Xu ◽  
...  

AbstractBroadly neutralizing antibodies (bnAbs) isolated from HIV-infected individuals delineate vulnerable sites on the HIV envelope glycoprotein that are potential vaccine targets. A linear epitope at the N-terminal region of the HIV-1 fusion peptide (FP8) is the primary target of VRC34.01, a bnAb that neutralizes ~50% of primary HIV isolates. FP8 has attracted attention as a potential HIV vaccine target because it is a simple linear epitope. Here, we used platform technologies based on RNA bacteriophage virus-like particles (VLPs) to develop multivalent vaccines targeting the FP8 epitope. We produced recombinant MS2 VLPs displaying the FP8 peptide and we chemically conjugated synthetic FP8 peptides to Qβ VLPs. Both recombinant and conjugated FP8-VLPs induced high titers of FP8-specific antibodies in mice. A heterologous prime-boost-boost regimen employing the two FP8-VLP vaccines and native envelope trimer was the most effective approach for eliciting HIV-1 neutralizing antibodies. Given the potent immunogenicity of VLP-based vaccines, this vaccination strategy – inspired by bnAb-guided epitope mapping, VLP bioengineering, and optimal prime-boost immunization strategies – may be an effective strategy for eliciting bnAb responses against HIV.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Lucie Jelínková ◽  
Hugo Jhun ◽  
Allison Eaton ◽  
Nikolai Petrovsky ◽  
Fidel Zavala ◽  
...  

AbstractA malaria vaccine that elicits long-lasting protection and is suitable for use in endemic areas remains urgently needed. Here, we assessed the immunogenicity and prophylactic efficacy of a vaccine targeting a recently described epitope on the major surface antigen on Plasmodium falciparum sporozoites, circumsporozoite protein (CSP). Using a virus-like particle (VLP)-based vaccine platform technology, we developed a vaccine that targets the junctional region between the N-terminal and central repeat regions of CSP. This region is recognized by monoclonal antibodies, including mAb CIS43, that have been shown to potently prevent liver invasion in animal models. We show that CIS43 VLPs elicit high-titer and long-lived anti-CSP antibody responses in mice and is immunogenic in non-human primates. In mice, vaccine immunogenicity was enhanced by using mixed adjuvant formulations. Immunization with CIS43 VLPs conferred partial protection from malaria infection in a mouse model, and passive transfer of serum from immunized macaques also inhibited parasite liver invasion in the mouse infection model. Our findings demonstrate that a Qβ VLP-based vaccine targeting the CIS43 epitope combined with various adjuvants is highly immunogenic in mice and macaques, elicits long-lasting anti-CSP antibodies, and inhibits parasite infection in a mouse model. Thus, the CIS43 VLP vaccine is a promising pre-erythrocytic malaria vaccine candidate.


Sign in / Sign up

Export Citation Format

Share Document