scholarly journals Single-cell transcriptome profiling and the use of AID deficient mice reveal that B cell activation combined with antibody class switch recombination and somatic hypermutation do not benefit the control of experimental trypanosomosis

2021 ◽  
Vol 17 (11) ◽  
pp. e1010026
Author(s):  
Hang Thi Thu Nguyen ◽  
Robin B. Guevarra ◽  
Stefan Magez ◽  
Magdalena Radwanska

Salivarian trypanosomes are extracellular protozoan parasites causing infections in a wide range of mammalian hosts, with Trypanosoma evansi having the widest geographic distribution, reaching territories far outside Africa and occasionally even Europe. Besides causing the animal diseases, T. evansi can cause atypical Human Trypanosomosis. The success of this parasite is attributed to its capacity to evade and disable the mammalian defense response. To unravel the latter, we applied here for the first time a scRNA-seq analysis on splenocytes from trypanosome infected mice, at two time points during infection, i.e. just after control of the first parasitemia peak (day 14) and a late chronic time point during infection (day 42). This analysis was combined with flow cytometry and ELISA, revealing that T. evansi induces prompt activation of splenic IgM+CD1d+ Marginal Zone and IgMIntIgD+ Follicular B cells, coinciding with an increase in plasma IgG2c Ab levels. Despite the absence of follicles, a rapid accumulation of Aicda+ GC-like B cells followed first parasitemia peak clearance, accompanied by the occurrence of Xbp1+ expressing CD138+ plasma B cells and Tbx21+ atypical CD11c+ memory B cells. Ablation of immature CD93+ bone marrow and Vpreb3+Ly6d+Ighm+ expressing transitional spleen B cells prevented mature peripheral B cell replenishment. Interestingly, AID-/- mice that lack the capacity to mount anti-parasite IgG responses, exhibited a superior defense level against T. evansi infections. Here, elevated natural IgMs were able to exert in vivo and in vitro trypanocidal activity. Hence, we conclude that in immune competent mice, trypanosomosis associated B cell activation and switched IgG production is rapidly induced by T. evansi, facilitating an escape from the detrimental natural IgM killing activity, and resulting in increased host susceptibility. This unique role of IgM and its anti-trypanosome activity are discussed in the context of the dilemma this causes for the future development of anti-trypanosome vaccines.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2578-2578
Author(s):  
Mrinmoy Sanyal ◽  
Rosemary Fernandez ◽  
Shoshana Levy

Abstract CD81 is a component of the CD19/CD21 coreceptor complex in B cells. This tetraspanin molecule was previously shown to enable membrane reorganization in B cells responding to complement-bound antigens. Here we stimulated B cells via their B cell receptor (BCR) and demonstrate that Cd81−/− B cells fluxed higher intracellular free calcium ion along with increased phosphorylation of PLCγ2 and Syk. The stimulated Cd81−/− B cells also proliferated faster and secreted higher amounts of antibodies. Moreover, activation of the TLR4 pathway in Cd81−/− B cells induced increased proliferation and antibody secretion. Furthermore, Cd81−/− mice mounted a significantly higher immune response to T-cell independent antigens than their wildtype counterparts. Finally, analysis of Cd81−/− B cells that were generated by bone marrow transplantation into Rag1−/− mice confirmed a cell intrinsic hyperactive phenotype. Taken together, these results indicate that CD81 plays a negative role in B cell activation in vitro and in vivo.


1983 ◽  
Vol 157 (6) ◽  
pp. 1815-1827 ◽  
Author(s):  
G J Prud'homme ◽  
R S Balderas ◽  
F J Dixon ◽  
A N Theofilopoulos

B cell hyperactivity, a feature common to all lupus-prone murine strains, may be caused by hyperresponsiveness to, overproduction of, or bypassing of certain signals required for B cell activation, proliferation, and differentiation. In this study, we have compared the responses of B cells from three lupus-prone strains of mice (BXSB males, MRL and NZB/W females) and normal strains in a number of assays for which two or more signals are required to obtain a response. In medium to low density cultures of B cells from BXSB and NZB/W but not MRL/l lupus mice, the cells' proliferation induced by bacterial lipopolysaccharide (LPS) or anti-mu antibody was much higher than that of B cells from normal controls. At low B cell density, polyclonal activation by these substances and subsequent Ig secretion were dependent on accessory signals present in supernatants of concanavalin A-treated normal lymphocytes (CAS) or on the MRL/l proliferating T cell-derived B cell differentiation factor (L-BCDF) in both lupus-prone and immunologically normal mice. However, the responses of B cells from BXSB and NZB/W, but not MRL/l, mice to these accessory signals were higher than those of normal mice. Ig synthesis by fresh B cells of BXSB and NZB/W mice cultured in the absence of mitogens but in the presence of CAS or L-BCDF was higher than by similar cells from other strains, suggesting an increased frequency of B cells activated in vivo in these two autoimmune strains of mice. The patterns of IgG subclass secretion in response to LPS (without added CAS or L-BCDF) were abnormal in all lupus strains, with a predominance of IgG2b and/or IgG2a and low levels of IgG3, contrary to normal B cells for which IgG3 synthesis predominated. However, IgG1 synthesis in vitro by autoimmune and normal B cells alike was highly dependent on T cell-derived soluble mediators. Antigen-specific responses to SRBC in vitro of B cells from all lupus strains, like those of B cells from normal strains, required a minimum of three signals (antigen, LPS, T cell-derived antigen nonspecific helper factors). Yet, once triggered, B cells of BXSB and NZB/W mice gave higher responses than those of the other strains. We conclude that B cells of lupus mice have signal requirements similar to those of normal mice. Nevertheless, B cells of BXSB and NZB/W, but not MRL/l, lupus mice hyperrespond or process some accessory signals abnormally.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. SCI-1-SCI-1
Author(s):  
Ann Marshak-Rothstein

Abstract Despite numerous mechanisms that exist to purge the B-cell repertoire of potentially dangerous autoreactive cells, it is now clear that numerous cells with the capability of binding self determinants survive negative selection and persist peripherally as anergic or ignorant cells. Exactly how these B cells are normally constrained, and then aberrantly activated in the context of autoimmunity, are two major questions in B-cell biology. A better understanding of the mechanisms involved in these processes could provide important insights to the regulation of alloreactivity. One clue to our understanding of autoimmunity comes from the nature of the autoantigens commonly targeted in systemic autoimmune diseases. Autoantigens often consist of macromolecular complexes that incorporate self-nucleic acids, and numerous in vitro studies have now shown that many of these canonical autoantigens are essentially potent endogenous autoadjuvants. Mice expressing a low affinity BCR specific for autologous IgG2a can be potently activated by DNA or RNA-associated immune complexes through a mechanism dependent on both the BCR and either TLR9 or TLR7, and serve as a useful prototype for autoreactive B cells in general. A number of groups have now tested this BCR/TLR paradigm in vivo. As expected, Tlr9-/- autoimmune-prone mice fail to produce autoantibodies directed against chromatin, while Tlr7-/- mice fail to produce autoantibodies directed against numerous RNA-associated proteins. However, the Tlr9-/- mice develop accelerated clinical disease, while the Tlr7-/- mice exhibit remarkably prolonged survival. We have now shown that BCR/TLR9 and BCR/TLR7 induce inherently different functional outcomes in B cells. Quite remarkably, both in vitro and in vivo, BCR/TLR7-dependent activation of autoreactive B cells leads to a more prolonged response and increased numbers of antibody producing cells. This response can be defined by a unique gene-expression profile and associated with proteins known to promote plasmablast differentiation. By contrast, BCR/TLR9 activation appears to initially limit autoreactive B-cell expansion; although in the context of systemic autoimmunity TLR9 is required for the production of DNA-reactive autoantibodies. Together these data indicate that the outcome BCR/TLR9 engagement of autoreactive B cells is highly dependent on environmental cues, and suggest that BCR/TLR7 B-cell activation is a key factor in the initiation of systemic lupus erythematosus and other systemic disorders. Disclosures: Marshak-Rothstein: Idera Pharmaceuticals: Consultancy; Abbvie: Consultancy; Genentech: Honoraria.


1999 ◽  
Vol 73 (2) ◽  
pp. 1075-1079 ◽  
Author(s):  
Philip G. Stevenson ◽  
Peter C. Doherty

ABSTRACT The murine gammaherpesvirus MHV-68 multiplies in the respiratory epithelium after intranasal inoculation, then spreads to infect B cells in lymphoid germinal centers. Exposing B cells to MHV-68 in vitro caused an increase in cell size, up-regulation of the CD69 activation marker, and immunoglobulin M (IgM) production. The infectious process in vivo was also associated with increased CD69 expression on B cells in the draining lymph nodes and spleen, together with a rise in total serum Ig. However, whereas the in vitro effect on B cells was entirely T-cell independent, evidence of in vivo B-cell activation was minimal in CD4+ T-cell-deficient (I-Ab−/−) or CD4+ T-cell-depleted mice. Furthermore, the Ig present at high levels in serum was predominantly of the IgG class. Surprisingly, the titer of influenza virus-specific serum IgG in previously immunized mice fell following MHV-68 infection, suggesting that there was relatively little activation of memory B cells. Thus, CD4+T cells seemed both to amplify a direct viral activation of B cells in lymphoid tissue and to promote new Ig class switching despite a lack of obvious cognate antigen.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


2018 ◽  
Vol 46 (11) ◽  
pp. 5547-5560 ◽  
Author(s):  
Kuo-Hsuan Hung ◽  
Yong H Woo ◽  
I-Ying Lin ◽  
Chin-Hsiu Liu ◽  
Li-Chieh Wang ◽  
...  

Abstract T follicular helper (Tfh) cell-derived signals promote activation and proliferation of antigen-primed B cells. It remains unclear whether epigenetic regulation is involved in the B cell responses to Tfh cell-derived signals. Here, we demonstrate that Tfh cell-mimicking signals induce the expression of histone demethylases KDM4A and KDM4C, and the concomitant global down-regulation of their substrates, H3K9me3/me2, in B cells. Depletion of KDM4A and KDM4C potentiates B cell activation and proliferation in response to Tfh cell-derived signals. ChIP-seq and de novo motif analysis reveals NF-κB p65 as a binding partner of KDM4A and KDM4C. Their co-targeting to Wdr5, a MLL complex member promoting H3K4 methylation, up-regulates cell cycle inhibitors Cdkn2c and Cdkn3. Thus, Tfh cell-derived signals trigger KDM4A/KDM4C - WDR5 - Cdkn2c/Cdkn3 cascade in vitro, an epigenetic mechanism regulating proper proliferation of activated B cells. This pathway is dysregulated in B cells from systemic lupus erythematosus patients and may represent a pathological link.


2004 ◽  
Vol 24 (3) ◽  
pp. 997-1006 ◽  
Author(s):  
Eugene Varfolomeev ◽  
Frank Kischkel ◽  
Flavius Martin ◽  
Dhaya Seshasayee ◽  
Hua Wang ◽  
...  

ABSTRACT APRIL (a proliferation-inducing ligand) is a member of the tumor necrosis factor (TNF) superfamily. APRIL mRNA shows high levels of expression in tumors of different origin and a low level of expression in normal cells. APRIL shares two TNF receptor family members, TACI and BCMA, with another TNF homolog, BLyS/BAFF. BLyS is involved in regulation of B-cell activation and survival and also binds to a third receptor, BR3/BAFF-R, which is not shared with APRIL. Recombinant APRIL and BLyS induce accumulation of B cells in mice, while BLyS deficiency results in severe B-cell dysfunction. To investigate the physiological role of APRIL, we generated mice that are deficient in its encoding gene. APRIL−/− mice were viable and fertile and lacked any gross abnormality. Detailed histological analysis did not reveal any defects in major tissues and organs, including the primary and secondary immune organs. T- and B-cell development and in vitro function were normal as well, as were T-cell-dependent and -independent in vivo humoral responses to antigenic challenge. These data indicate that APRIL is dispensable in the mouse for proper development. Thus, BLyS may be capable of fulfilling APRIL's main functions.


2019 ◽  
Vol 12 (571) ◽  
pp. eaao7194 ◽  
Author(s):  
Isabel Wilhelm ◽  
Ella Levit-Zerdoun ◽  
Johanna Jakob ◽  
Sarah Villringer ◽  
Marco Frensch ◽  
...  

Bacterial lectins are typically multivalent and bind noncovalently to specific carbohydrates on host tissues to facilitate bacterial adhesion. Here, we analyzed the effects of two fucose-binding lectins, BambL fromBurkholderia ambifariaand LecB fromPseudomonas aeruginosa, on specific signaling pathways in B cells. We found that these bacterial lectins induced B cell activation, which, in vitro, was dependent on the cell surface expression of the B cell antigen receptor (BCR) and its co-receptor CD19, as well as on spleen tyrosine kinase (Syk) activity. The resulting release of intracellular Ca2+was followed by an increase in the cell surface abundance of the activation marker CD86, augmented cytokine secretion, and subsequent cell death, replicating all of the events that are observed in vitro upon canonical and antigen-mediated B cell activation. Moreover, injection of BambL in mice resulted in a substantial, BCR-independent loss of B cells in the bone marrow with simultaneous, transient enlargement of the spleen (splenomegaly), as well as an increase in the numbers of splenic B cells and myeloid cells. Together, these data suggest that bacterial lectins can initiate polyclonal activation of B cells through their sole capacity to bind to fucose.


Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1299-1307 ◽  
Author(s):  
Hideya Igarashi ◽  
Nobuo Sakaguchi

Abstract To understand the molecular events for the proliferation of B cells, we studied the induction of telomerase activity in vitro after stimulation to B-cell antigen receptor (BCR) on human peripheral B cells. Although unstimulated purified B cells of tonsils and peripheral blood from healthy volunteers do not express detectable telomerase activity, anti-IgM beads induce telomerase activity in these B cells. Soluble anti-IgM antibody (Ab) alone does not induce telomerase activity, but the second signal, given by either one of the cytokines of interleukin-2 (IL-2), IL-4, and IL-13 or by anti-CD40 monoclonal Ab (MoAb), is effective as the costimulation for the induction of the activity. Stimulation with antiIgM Ab and anti-CD40 MoAb induces telomerase activity in most mature B cells of the tonsils and peripheral blood. The stimuli to both IgM and IgD receptors similarly induce the activity. Induction of telomerase activity is accompanied with the proliferation of B cells, but is not absolutely correlated with the extent of B-cell growth. Phorbol dibutylate (PDB) plus calcium (Ca) ionophore (PDB/Ca), which replace the activation through BCR and the costimulatory molecules, also induce telomerase activity. Moreover, it is suggested that phosphoinositide (PI) 3-kinase plays a role for the induction of telomerase activity in B cells stimulated with anti-IgM Ab and anti-CD40 MoAb. These results suggest that telomerase activity is induced in the B-cell activation of the antigen specific immune response.


Sign in / Sign up

Export Citation Format

Share Document