scholarly journals Acetylation of glucosyltransferases regulates Streptococcus mutans biofilm formation and virulence

2021 ◽  
Vol 17 (12) ◽  
pp. e1010134
Author(s):  
Qizhao Ma ◽  
Yangyang Pan ◽  
Yang Chen ◽  
Shuxing Yu ◽  
Jun Huang ◽  
...  

Lysine acetylation is a frequently occurring post-translational modification (PTM), emerging as an important metabolic regulatory mechanism in prokaryotes. This process is achieved enzymatically by the protein acetyltransferase (KAT) to specifically transfer the acetyl group, or non-enzymatically by direct intermediates (acetyl phosphate or acetyl-CoA). Although lysine acetylation modification of glucosyltransferases (Gtfs), the important virulence factor in Streptococcus mutans, was reported in our previous study, the KAT has not been identified. Here, we believe that the KAT ActG can acetylate Gtfs in the enzymatic mechanism. By overexpressing 15 KATs in S. mutans, the synthesized water-insoluble extracellular polysaccharides (EPS) and biofilm biomass were measured, and KAT (actG) was identified. The in-frame deletion mutant of actG was constructed to validate the function of actG. The results showed that actG could negatively regulate the water-insoluble EPS synthesis and biofilm formation. We used mass spectrometry (MS) to identify GtfB and GtfC as the possible substrates of ActG. This was also demonstrated by in vitro acetylation assays, indicating that ActG could increase the acetylation levels of GtfB and GtfC enzymatically and decrease their activities. We further found that the expression level of actG in part explained the virulence differences in clinically isolated strains. Moreover, overexpression of actG in S. mutans attenuated its cariogenicity in the rat caries model. Taken together, our study demonstrated that the KAT ActG could induce the acetylation of GtfB and GtfC enzymatically in S. mutans, providing insights into the function of lysine acetylation in bacterial virulence and pathogenicity.

2015 ◽  
Vol 60 (1) ◽  
pp. 126-135 ◽  
Author(s):  
Zhi Ren ◽  
Tao Cui ◽  
Jumei Zeng ◽  
Lulu Chen ◽  
Wenling Zhang ◽  
...  

ABSTRACTDental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation inStreptococcus mutansis promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibitingS. mutansbiofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein fromS. mutansresulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor.In vitroassays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation inS. mutansby selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, thein vivoanti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface cariesin vivowith a concomitant reduction in the percentage ofS. mutansin the animals' dental plaque (P< 0.05). Taken together, these results represent the first description of a compound that targets Gtfs and that has the capacity to inhibit biofilm formation and the cariogenicity ofS. mutans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yucui Liu ◽  
Yanxin Huang ◽  
Cong Fan ◽  
Zhongmei Chi ◽  
Miao Bai ◽  
...  

Streptococcus mutans (S. mutans), the prime pathogen of dental caries, can secrete glucosyltransferases (GTFs) to synthesize extracellular polysaccharides (EPSs), which are the virulence determinants of cariogenic biofilms. Ursolic acid, a type of pentacyclic triterpene natural compound, has shown potential antibiofilm effects on S. mutans. To investigate the mechanisms of ursolic acid-mediated inhibition of S. mutans biofilm formation, we first demonstrated that ursolic acid could decrease the viability and structural integrity of biofilms, as evidenced by XTT, crystal violet, and live/dead staining assays. Then, we further revealed that ursolic acid could compete with the inherent substrate to occupy the catalytic center of GTFs to inhibit EPS formation, and this was confirmed by GTF activity assays, computer simulations, site-directed mutagenesis, and capillary electrophoresis (CE). In conclusion, ursolic acid can decrease bacterial viability and prevent S. mutans biofilm formation by binding and inhibiting the activity of GTFs.


2013 ◽  
Vol 41 (7) ◽  
pp. 619-627 ◽  
Author(s):  
Dongjie Fu ◽  
Dandan Pei ◽  
Cui Huang ◽  
Yinchen Liu ◽  
Xijin Du ◽  
...  

2015 ◽  
Vol 467 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Satoru Yuzawa ◽  
Sachiko Kamakura ◽  
Junya Hayase ◽  
Hideki Sumimoto

The functions of microtubules are controlled in part by tubulin post-translational modification including acetylation of Lys40 in α-tubulin. αTAT1 (α-tubulin acetyltransferase 1), an enzyme evolutionarily conserved among eukaryotes, has recently been identified as the major α-tubulin Lys40 acetyltransferase, in which AcCoA (acetyl-CoA) serves as an acetyl group donor. The regulation and substrate recognition of this enzyme, however, have not been fully understood. In the present study, we show that AcCoA and CoA each form a stable complex with human αTAT1 to maintain the protein integrity both in vivo and in vitro. The invariant residues Arg132 and Ser160 in αTAT1 participate in the stable interaction not only with AcCoA but also with CoA, which is supported by analysis of the present crystal structures of the αTAT1 catalytic domain in complex with CoA. Alanine substitution for Arg132 or Ser160 leads to a drastic misfolding of the isolated αTAT1 catalytic domain in the absence of CoA and AcCoA but not in the presence of excess amounts of either cofactor. A mutant αTAT1 carrying the R132A or S160A substitution is degraded much faster than the wild-type protein when expressed in mammalian Madin–Darby canine kidney cells. Furthermore, alanine-scanning experiments using Lys40-containing peptides reveal that α-tubulin Ser38 is crucial for substrate recognition of αTAT1, whereas Asp39, Ile42, the glycine stretch (amino acid residues 43–45) and Asp46 are also involved. The requirement for substrate selection is totally different from that in various histone acetyltransferases, which appears to be consistent with the inability of αTAT1 to acetylate histones.


2009 ◽  
Vol 75 (22) ◽  
pp. 7037-7043 ◽  
Author(s):  
Min Zhu ◽  
Dragana Ajdić ◽  
Yuan Liu ◽  
David Lynch ◽  
Justin Merritt ◽  
...  

ABSTRACT Dextran-dependent aggregation (DDAG) of Streptococcus mutans is an in vitro phenomenon that is believed to represent a property of the organism that is beneficial for sucrose-dependent biofilm development. GbpC, a cell surface glucan-binding protein, is responsible for DDAG in S. mutans when cultured under defined stressful conditions. Recent reports have described a putative transcriptional regulator gene, irvA, located just upstream of gbpC, that is normally repressed by the product of an adjacent gene, irvR. When repression of irvA is relieved, there is a resulting increase in the expression of GbpC and decreases in competence and synthesis of the antibiotic mutacin I. This study examined the role of irvA in DDAG and biofilm formation by engineering strains that overexpressed irvA (IrvA+) on an extrachromosomal plasmid. The IrvA+ strain displayed large aggregation particles that did not require stressful growth conditions. A novel finding was that overexpression of irvA in a gbpC mutant background retained a measure of DDAG, albeit very small aggregation particles. Biofilms formed by the IrvA+ strain in the parental background possessed larger-than-normal microcolonies. In a gbpC mutant background, the overexpression of irvA reversed the fragile biofilm phenotype normally associated with loss of GbpC. Real-time PCR and Northern blot analyses found that expression of gbpC did not change significantly in the IrvA+ strain but expression of spaP, encoding the major surface adhesin P1, increased significantly. Inactivation of spaP eliminated the small-particle DDAG. The results suggest that IrvA promotes DDAG not only by GbpC, but also via an increase in P1.


2007 ◽  
Vol 56 (11) ◽  
pp. 1528-1535 ◽  
Author(s):  
Moshe Shemesh ◽  
Avshalom Tam ◽  
Doron Steinberg

Streptococcus mutans is known as a primary pathogen of dental caries, one of the most common human infectious diseases. Exopolysaccharide synthesis, adherence to tooth surface and biofilm formation are important physiological and virulence factors of S. mutans. In vitro comparative gene expression analysis was carried out to differentiate 10 selected genes known to be mostly involved in S. mutans biofilm formation by comparing the expression under biofilm and planktonic environments. Real-time RT-PCR analyses indicated that all of the genes tested were upregulated in the biofilm compared to cells grown in planktonic conditions. The influence of simple dietary carbohydrates on gene expression in S. mutans biofilm was tested also. Among the tested genes, in the biofilm phase, the greatest induction was observed for gtf and ftf, which are genes encoding the extracellular polysaccharide-producing enzymes. Biofilm formation was accompanied by a 22-fold induction in the abundance of mRNA encoding glucosyltransferase B (GTFB) and a 14.8 -fold increase in mRNA encoding GTFC. Levels of mRNA encoding fructosyltransferase were induced approximately 11.8-fold in biofilm-derived cells. Another notable finding of this study suggests that glucose affects the expression of S. mutans GS5 biofilm genes. In spite of a significant upregulation in biofilm-associated gene expression in the presence of sucrose, the presence of glucose with sucrose reduced expression of most tested genes. Differential analysis of the transcripts from S. mutans, grown in media with various nutrient contents, revealed significant shifts in the expression of the genes involved in biofilm formation. The results presented here provide new insights at the molecular level regarding gene expression in this bacterium when grown under biofilm conditions, allowing a better understanding of the mechanism of biofilm formation by S. mutans.


1981 ◽  
Vol 60 (C) ◽  
pp. 1601-1610 ◽  
Author(s):  
Patrick Treasure

Effects of trace elements on production of extracellular polysaccharides (EPS) by S. mutans and A. viscosus were examined in vitro. Fluoride enhanced EPS production. Lithium and strontium had little effect alone, but tended to reverse the effect of fluoride. The proportion of water-soluble EPS and the proportion of glucosyl-EPS were increased by fluoride.


2007 ◽  
Vol 51 (4) ◽  
pp. 1541-1544 ◽  
Author(s):  
Tom Coenye ◽  
Kris Honraet ◽  
Petra Rigole ◽  
Pol Nadal Jimenez ◽  
Hans J. Nelis

ABSTRACT We report that certain anthraquinones (AQs) reduce Streptococcus mutans biofilm formation on hydroxyapatite at concentrations below the MIC. Although AQs are known to generate reactive oxygen species, the latter do not underlie the observed effect. Our results suggest that AQs inhibit S. mutans biofilm formation by causing membrane perturbation.


2003 ◽  
Vol 71 (4) ◽  
pp. 1972-1979 ◽  
Author(s):  
Justin Merritt ◽  
Fengxia Qi ◽  
Steven D. Goodman ◽  
Maxwell H. Anderson ◽  
Wenyuan Shi

ABSTRACT Quorum sensing is a bacterial mechanism for regulating gene expression in response to changes in population density. Many bacteria are capable of acyl-homoserine lactone-based or peptide-based intraspecies quorum sensing and luxS-dependent interspecies quorum sensing. While there is good evidence about the involvement of intraspecies quorum sensing in bacterial biofilm, little is known about the role of luxS in biofilm formation. In this study, we report for the first time that luxS-dependent quorum sensing is involved in biofilm formation of Streptococcus mutans. S. mutans is a major cariogenic bacterium in the multispecies bacterial biofilm commonly known as dental plaque. An ortholog of luxS for S. mutans was identified using the data available in the S. mutans genome project (http://www.genome.ou.edu/smutans.html ). Using an assay developed for the detection of the LuxS-associated quorum sensing signal autoinducer 2 (AI-2), it was demonstrated that this ortholog was able to complement the luxS negative phenotype of Escherichia coli DH5α. It was also shown that AI-2 is indeed produced by S. mutans. AI-2 production is maximal during mid- to late-log growth in batch culture. Mutant strains devoid of the luxS gene were constructed and found to be defective in producing the AI-2 signal. There are also marked phenotypic differences between the wild type and the luxS mutants. Microscopic analysis of in vitro-grown biofilm structure revealed that the luxS mutant biofilms adopted a much more granular appearance, rather than the relatively smooth, confluent layer normally seen in the wild type. These results suggest that LuxS-dependent signal may play an important role in biofilm formation of S. mutans.


2010 ◽  
Vol 62 (2) ◽  
pp. 618-622 ◽  
Author(s):  
Eva M. Söderling ◽  
Aino M. Marttinen ◽  
Anna L. Haukioja

Sign in / Sign up

Export Citation Format

Share Document