scholarly journals Effect of Smoked Cannabis on Vigilance and Accident Risk Using Simulated Driving in Occasional and Chronic Users and the Pharmacokinetic–Pharmacodynamic Relationship

2019 ◽  
Vol 65 (5) ◽  
pp. 684-693 ◽  
Author(s):  
Sarah Hartley ◽  
Nicolas Simon ◽  
Amine Larabi ◽  
Isabelle Vaugier ◽  
Frédéric Barbot ◽  
...  

Abstract BACKGROUND The pharmacokinetic–pharmacodynamic relationship between whole blood δ-9-tetrahydrocannabinol (THC) and driving risk is poorly understood. METHODS Fifteen chronic cannabis consumers (1–2 joints/day; CC) and 15 occasional cannabis consumers (1–2 joints/week; OC) of 18 to 34 years of age were included. A pharmacokinetic study was conducted with 12 blood samplings over a 24-h period before and after controlled random inhalation of placebo or 10 mg or 30 mg of THC. THC and metabolites were quantified using LC-MS/MS. Effects on reaction time by psychomotor vigilance tests and driving performance through a York driving simulator were evaluated 7 times. A pharmacokinetic–pharmacodynamic analysis was performed using R software. RESULTS Whole blood peak THC was 2 times higher in CC than in OC for a same dose and occurred 5 min after the end of consumption. THC remained detectable only in CC after 24 h. Despite standardized consumption, CC consumed more available THC from each cigarette regardless of dose. Maximal effect for reaction time was dose- and group-dependent and only group-dependent for driving performance, both being decreased and more marked in OC than in CC. These effects were maximal around 5 h after administration, and the duration was longer in OC than in CC. A significant pharmacokinetic–pharmacodynamic relationship was observed only between Tmax for blood THC and the duration effect on mean reciprocal reaction time. CONCLUSIONS Inhalation from cannabis joints leads to a rapid increase in blood THC with a delayed decrease in vigilance and driving performance, more pronounced and lasting longer in OC than in CC. ClinicalTrials.gov Identifier: NCT02061020

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ioanna Spyropoulou ◽  
Maria Linardou

Mobile phone use while driving is a major cause of driver distraction, affecting driving performance and increasing accident risk. Governments have responded to this with the implementation of legislation prohibiting the use of mobile phones, under specific conditions, mainly adopting the hands-free use. Still, mobile phone is a cause of several types of distraction rather than just manual. This study explores the effect of mobile phone use while driving via a simulator experiment. Participants drive under various types of mobile phone use mode- namely, handheld, hands-free (wired earphone), and speaker to capture this effect. Results highlight the effect of mobile phone use, regardless of the use mode, on driving behaviour through specific indicators: maximum driving speed, reaction time, and lateral position. In particular, considering the aforementioned parameters the handheld mode demonstrates safer driving behaviour compared to the speaker mode. The results of this study stress the need for a reconsideration of the present legislation.


Author(s):  
Kadek Heri Sanjaya ◽  
Yukhi Mustaqim Kusuma Sya'Bana ◽  
Shaun Hutchinson ◽  
Cyriel Diels

Sleep-related driving fatigue has been recognised as one main cause of traffic accidents. In Indonesia, experiment-based driving fatigue study is still very limited, therefore it is necessary to develop laboratory-based experiment procedure for sleep-related fatigue study. In this preliminary study, we performed a literature review to find references for the procedure and three pilot experiments to test the instruments and procedure to be used in measuring driving fatigue. Three subjects participated, both from experienced and inexperienced drivers. Our pilot experiments were performed on a driving simulator using OpenDS software with brake and lane change test reaction time measurement. We measured sleepiness by using Karolinska Sleepiness Scale (KSS) Questionnaire. The conditions of the experiment were based on illumination intensity as well as pre- and post-lunch session. We found that lane change reaction time is more potential than brake reaction time to measure driving performance as shown by the more fluctuating data. Post-lunch seems to induce drowsiness greater than illumination intensity. KSS questionnaire seems non-linear with driving performance data. We need to test further these speculations in the future studies involving a sufficient number of subjects. We also need to compare the effect of circadian rhythm and sleep deprivation on driving fatigue. The use of eye closure and physiological measurement in further study will enable us to measure driving fatigue more objectively. Considering the limitations, more preliminary experiments are required to be performed before conducting the main experiment of driving fatigue.


1988 ◽  
Vol 65 (6) ◽  
pp. 2679-2686 ◽  
Author(s):  
S. T. Kariya ◽  
S. A. Shore ◽  
W. A. Skornik ◽  
K. Anderson ◽  
R. H. Ingram ◽  
...  

The maximal effect induced by methacholine (MCh) aerosols on pulmonary resistance (RL), and the effects of altering lung volume and O3 exposure on these induced changes in RL, was studied in five anesthetized and paralyzed dogs. RL was measured at functional residual capacity (FRC), and lung volumes above and below FRC, after exposure to MCh aerosols generated from solutions of 0.1-300 mg MCh/ml. The relative site of response was examined by magnifying parenchymal [RL with large tidal volume (VT) at fast frequency (RLLS)] or airway effects [RL with small VT at fast frequency (RLSF)]. Measurements were performed on dogs before and after 2 h of exposure to 3 ppm O3. MCh concentration-response curves for both RLLS and RLSF were sigmoid shaped. Alterations in mean lung volume did not alter RLLS; however, RLSF was larger below FRC than at higher lung volumes. Although O3 exposure resulted in small leftward shifts of the concentration-response curve for RLLS, the airway dominated index of RL (RLSF) was not altered by O3 exposure, nor was the maximal response using either index of RL. These data suggest O3 exposure does not affect MCh responses in conducting airways; rather, it affects responses of peripheral contractile elements to MCh, without changing their maximal response.


Author(s):  
Alejandro A. Arca ◽  
Kaitlin M. Stanford ◽  
Mustapha Mouloua

The current study was designed to empirically examine the effects of individual differences in attention and memory deficits on driver distraction. Forty-eight participants consisting of 37 non-ADHD and 11 ADHD drivers were tested in a medium fidelity GE-ISIM driving simulator. All participants took part in a series of simulated driving scenarios involving both high and low traffic conditions in conjunction with completing a 20-Questions task either by text- message or phone-call. Measures of UFOV, simulated driving, heart rate variability, and subjective (NASA TLX) workload performance were recorded for each of the experimental tasks. It was hypothesized that ADHD diagnosis, type of cellular distraction, and traffic density would affect driving performance as measured by driving performance, workload assessment, and physiological measures. Preliminary results indicated that ADHD diagnosis, type of cellular distraction, and traffic density affected the performance of the secondary task. These results provide further evidence for the deleterious effects of cellphone use on driver distraction, especially for drivers who are diagnosed with attention-deficit and memory capacity deficits. Theoretical and practical implications are discussed, and directions for future research are also presented.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 178-179
Author(s):  
S. Alehashemi ◽  
M. Garg ◽  
B. Sellers ◽  
A. De Jesus ◽  
A. Biancotto ◽  
...  

Background:Systemic Autoinflammatory diseases present with sterile inflammation. NOMID (Neonatal-Onset Multisystem Inflammatory Disease) is caused by gain-of-function mutations inNLRP3and excess IL-1 production, presents with fever, neutrophilic dermatosis, aseptic meningitis, hearing loss and eye inflammation; CANDLE (Chronic Atypical Neutrophilic Dermatosis, Lipodystrophy and Elevated Temperature) is caused by loss-of-function mutations in proteasome genes that lead to type-1 interferon signaling, characterized by fever, panniculitis, lipodystrophy, cytopenia, systemic and pulmonary hypertension and basal ganglia calcification. IL-1 blockers are approved for NOMID and JAK-inhibitors show efficacy in CANDLE treatment.Objectives:We used proteomic analysis to compare differentially expressed proteins in active NOMID and CANDLE compared to healthy controls before and after treatment, and whole blood bulk RNA seq to identify the immune cell signatures.Methods:Serum samples from active NOMID (n=12) and CANDLE (n=7) before and after treatment (table 1) and age matched healthy controls (HC) (n=7) were profiled using the SomaLogic platform (n=1125 proteins). Differentially expressed proteins in NOMID and CANDLE were ranked after non-parametric tests for unpaired (NOMIDp<0.05, CANDLE,p<0.1) and paired (p<0.05) analysis and assessed by enriched Gene Ontology pathways and network visualization. Whole blood RNA seq was performed (NOMID=7, CANDLE=7, Controls =5) and RPKM values were used to assess immune cells signatures.Table 1.Patient’s characteristicsNOMIDN=12, Male =6CANDLEN=7, Male =6AgeMedian (range)12 (2, 28)16 (3, 20)Ethnicity%White (Hispanic)80 (20)100 (30)GeneticsNLRP3mutation(2 Somatic, 10 Germline)mutations in proteasome component genes(1 digenic, 6 Homozygous/compound Heterozygous)Before treatmentAfter treatmentBefore treatmentAfter treatmentCRPMedian (range) mg/L52 (16-110)5 (0-23)5 (0-101)1 (0-4)IFN scoremedian (range)0NA328 (211-1135)3 (0-548)Results:Compared to control, 205 proteins (127 upregulated, 78 downregulated) were significantly different at baseline in NOMID, compared to 163 proteins (101 upregulated, and 62 downregulated) in CANDLE. 134 dysregulated proteins (85 upregulated, 49 downregulated) overlapped in NOMID and CANDLE (Figure 1). Pathway analysis identified neutrophil and monocyte chemotaxis signature in both NOMID and CANDLE. NOMID patients had neutrophilia and active neutrophils. CANDLE patients exhibited active neutrophils in whole blood RNA. Endothelial cell activation was the most prominent non-hematopoietic signature and suggest distinct endothelial cell dysregulation in NOMID and CANDLE. In NOMID, the signature included neutrophil transmigration (SELE) endothelial cell motility in response to angiogenesis (HGF, VEGF), while in CANDLE the endothelial signatures included extracellular matrix protein deposition (COL8A) suggesting increased vascular stiffness. CANDLE patients had higher expression of Renin, 4 out of 7 had hypertension, NOMID patients did not have hypertension. Treatment with anakinra and baricitinib normalized 143 and 142 of dysregulated proteins in NOMID and CANDLE respectively.Conclusion:Differentially expressed proteins in NOMID and CANDLE are consistent with innate immune cell activation. Distinct endothelial cell signatures in NOMID and CANDLE may provide mechanistic insight into differences in vascular phenotypes. Treatment with anakinra and Baricitinib in NOMID and CANDLE leaves 30% and 13% of the dysregulated proteins unchanged.Acknowledgments:This work was supported by Intramural Research atNational Institute of Allergy Immunology and Infectious Diseases of National Institutes of Health, Bethesda, Maryland, the Center of Human Immunology and was approved by the IRB.Disclosure of Interests:None declared


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A117-A117
Author(s):  
Janna Mantua ◽  
Carolyn Mickelson ◽  
Jacob Naylor ◽  
Bradley Ritland ◽  
Alexxa Bessey ◽  
...  

Abstract Introduction Sleep loss that is inherent to military operations can lead to cognitive errors and potential mission failure. Single Nucleotide Polymorphisms (SNPs) allele variations of several genes (COMT, ADORA2A, TNFa, CLOCK, DAT1) have been linked with inter-individual cognitive resilience to sleep loss through various mechanisms. U.S. Army Soldiers with resilience-related alleles may be better-suited to perform cognitively-arduous duties under conditions of sleep loss than those without these alleles. However, military-wide genetic screening is costly, arduous, and infeasible. This study tested whether a brief survey of subjective resilience to sleep loss (1) can demarcate soldiers with and without resilience-related alleles, and, if so, (2) can predict cognitive performance under conditions of sleep loss. Methods Six SNPs from the aforementioned genes were sequenced from 75 male U.S. Army special operations Soldiers (age 25.7±4.1). Psychomotor vigilance, response inhibition, and decision-making were tested after a night of mission-driven total sleep deprivation. The Iowa Resilience to Sleeplessness Test (iREST) Cognitive Subscale, which measures subjective cognitive resilience to sleep loss, was administered after a week of recovery sleep. A receiver operating characteristic (ROC) curve was used to determine whether the iREST Cognitive Subscale can discriminate between gene carriers, and a cutoff score was determined. Cognitive performance after sleep deprivation was compared between those below/above the cutoff score using t-tests or Mann-Whitney U tests. Results The iREST discriminated between allele variations for COMT (ROC=.65,SE=.07,p=.03), with an optimal cutoff score of 3.03 out of 5, with 90% sensitivity and 51.4% specificity. Soldiers below the cutoff score had significantly poorer for psychomotor vigilance reaction time (t=-2.39,p=.02), response inhibition errors of commission (U=155.00,W=246.00,p=.04), and decision-making reaction time (t=2.13,p=.04) than Soldiers above the cutoff score. Conclusion The iREST Cognitive Subscale can discriminate between those with and without specific vulnerability/resilience-related genotypes. If these findings are replicated, the iREST Cognitive Subscale could be used to help military leaders make decisions about proper personnel placement when sleep loss is unavoidable. This would likely result in increased safety and improved performance during military missions. Support (if any) Support for this study came from the Military Operational Medicine Research Program of the United States Army Medical Research and Development Command.


2017 ◽  
Vol 44 (4) ◽  
pp. 294-300 ◽  
Author(s):  
Magdalena Jankowska ◽  
Paweł Rudnicki-Velasquez ◽  
Hanna Storoniak ◽  
Przemysław Rutkowski ◽  
Bolesław Rutkowski ◽  
...  

Aim: (1) To describe the whole blood content of thiamine diphosphate (TDP), a biologically active form of vitamin B1 in end-stage kidney disease patients treated with hemodialysis (HD); (2) to establish the impact of a single HD procedure on TDP blood concentrations; and (3) to describe potential explanatory variables influencing TDP dialysis related losses, including dialysis prescription, vitamin B1 dietary intake and supplementation. Methods: Single-center, cross-sectional study in 50 clinically stable maintenance HD patients. The assessment of whole blood TDP with the High Performance Liquid Chromatography method, before and after a single, middle-week dialysis session and analysis of clinical and laboratory parameters potentially influencing TDP status Results: We report a significant difference in TDP levels before and after HD sessions - 42.5 (95% CI 38.7-46.2) μg/L and 23.6 (95% CI 18.9-28.2) μg/L, respectively (p = 0.000). The magnitude of intradialytic TDP changes is highly variable among individuals and is negatively associated only with the body weight of the patients (p < 0.013). Vitamin B1 dietary intake and supplementation do not influence whole blood TDP and dialysis-related loss of TDP. Conclusions: TDP, a bioactive compound of vitamin B1, is substantially lost during the HD procedure, and the magnitude of its loss is associated with the patient's body weight but it is not influenced by vitamin B1 dietary intake and standard supplementation dose.


2016 ◽  
Vol 9 (2) ◽  
pp. 119 ◽  
Author(s):  
Marjan Erfani ◽  
Hedayat Sahraei ◽  
Zahra Bahari ◽  
Gholam Hossein Meftahi ◽  
Boshra Hatef ◽  
...  

<strong></strong><p><strong>BACKGROUND:</strong> Time change (which can lead to sleep duration decrements) can lead to brain dysfunction if repeated. In the present study, cognitive functions of the volunteers were evaluated before and after the time changes in Tehran.</p><p><strong>METHODS:</strong> Eleven, voluntary healthy persons (21±2 year old) were evaluated for their cognitive functions including sustain attention, reaction time, and mental fatigue twenty-one days before the time changes and thirty-eight days after time change using PASAT software. In addition, plasma cortisol level was measured before and after the time changes.</p><p><strong>RESULTS:</strong> After the time changes salivary cortisol concentration increase, but general mental health was decreased. Sustain attention was shortened after time change which was significantly different compared with before the time changes. Reaction time was increased after the time changes in comparison with the before the time changes, but was not statistically significant. In addition, mental fatigue was increased after the time changes.</p><p><strong>CONCLUSION:</strong> It seems that time change may reduce brain cognitive functions which are manifested by general mental health, sustain attention reduction, reaction time as well as mental fatigue.</p>


2021 ◽  
Vol 79 (4) ◽  
pp. 1575-1587
Author(s):  
Zhouyuan Peng ◽  
Hiroyuki Nishimoto ◽  
Ayae Kinoshita

Background: With the rapid aging of the population, the issue of driving by dementia patients has been causing increasing concern worldwide. Objective: To investigate the driving difficulties faced by senior drivers with cognitive impairment and identify the specific neuropsychological tests that can reflect specific domains of driving maneuvers. Methods: Senior drivers with cognitive impairment were investigated. Neuropsychological tests and a questionnaire on demographic and driving characteristics were administered. Driving simulator tests were used to quantify participants’ driving errors in various domains of driving. Results: Of the 47 participants, 23 current drivers, though they had better cognitive functions than 24 retired drivers, were found to have impaired driving performance in the domains of Reaction, Starting and stopping, Signaling, and Overall (wayfinding and accidents). The parameters of Reaction were significantly related to the diagnosis, and the scores of MMSE, TMT-A, and TMT-B. As regards details of the driving errors, “Sudden braking” was associated with the scores of MMSE (ρ= –0.707, p < 0.01), BDT (ρ= –0.560, p < 0.05), and ADAS (ρ= 0.758, p < 0.01), “Forgetting to use turn signals” with the TMT-B score (ρ= 0.608, p < 0.05), “Centerline crossings” with the scores of MMSE (ρ= –0.582, p < 0.05) and ADAS (ρ= 0.538, p < 0.05), and “Going the wrong way” was correlated with the score of CDT (ρ= –0.624, p < 0.01). Conclusion: Different neuropsychological factors serve as predictors of different specific driving maneuvers segmented from driving performance.


Sign in / Sign up

Export Citation Format

Share Document