Analysis of Polypeptide and Protein Structures Using Fourier Transform Infared Spectroscopy

Author(s):  
Parvez I. Haris ◽  
Dennis Chapman
1997 ◽  
Vol 3 (S2) ◽  
pp. 1025-1026
Author(s):  
Douglas L. Dorset

In principle, the availability of high-resolution micrographs in electron crystallography is a direct solution of the phase problem that has been used to great advantage for the study of proteins. However, as the resolution of the determination increases, the Fourier transform of the micrograph becomes a less accurate phase source. Hence, alternative direct methods for phase determination have been evaluated, if only to extend the resolution of most reliable lower resolution phases to the limit of the electron diffraction pattern. The first demonstration of its feasibility was published in a study of bacteriorhodopsin extending 15 Å image phases to beyond 3 Å by maximum entropy and likelihood procedures i. Later studies demonstrated that convolutional methods also can be effective.In protein crystallography, there is always an interest in carrying out a true ab initio determinations, if only because of the challenge to traditional direct methods that become statistically less reliable as the number of atoms in the unit cell increases.


Biochemistry ◽  
1995 ◽  
Vol 34 (33) ◽  
pp. 10508-10518 ◽  
Author(s):  
I. H. M. van Stokkum ◽  
H. Linsdell ◽  
J. M. Hadden ◽  
P. I. Haris ◽  
D. Chapman ◽  
...  

Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Nur Shidaa Mohd Ali ◽  
Abu Bakar Salleh ◽  
Raja Noor Zaliha Raja Abd Rahman ◽  
Thean Chor Leow ◽  
Mohd Shukuri Mohamad Ali

It is hypothesized that the Ca2+ ions were involved in the activity, folding and stabilization of many protein structures. Many of these proteins contain repeat in toxin (RTX) motifs. AMS8 lipase from Antarctic Pseudomonas fluorescens strain AMS8 was found to have three RTX motifs. So, this research aimed to examine the influence of Ca2+ ion towards the activity and folding of AMS8 lipase through various biophysical characterizations. The results showed that CaCl2 increased lipase activity. The far-UV circular dichroism (CD) and Fourier-transform infrared (FTIR) analysis suggested that the secondary structure content was improved with the addition of CaCl2. Fluorescence spectroscopy analysis showed that the presence of CaCl2 increased protein folding and compactness. Dynamic light scattering (DLS) analysis suggested that AMS8 lipase became aggregated at a high concentration of CaCl2.The binding constant (Kd) value from the isothermal titration calorimetry (ITC) analysis proved that the Ca2+ ion was tightly bound to the AMS8 lipase. In conclusion, Ca2+ ions play crucial roles in the activity and folding of the AMS8 lipase. Calcium binding to RTX nonapeptide repeats sequences will induced the formation and folding of the RTX parallel β-roll motif repeat structure.


Author(s):  
L. Reimer ◽  
R. Oelgeklaus

Quantitative electron energy-loss spectroscopy (EELS) needs a correction for the limited collection aperture α and a deconvolution of recorded spectra for eliminating the influence of multiple inelastic scattering. Reversely, it is of interest to calculate the influence of multiple scattering on EELS. The distribution f(w,θ,z) of scattered electrons as a function of energy loss w, scattering angle θ and reduced specimen thickness z=t/Λ (Λ=total mean-free-path) can either be recorded by angular-resolved EELS or calculated by a convolution of a normalized single-scattering function ϕ(w,θ). For rotational symmetry in angle (amorphous or polycrystalline specimens) this can be realised by the following sequence of operations :(1)where the two-dimensional distribution in angle is reduced to a one-dimensional function by a projection P, T is a two-dimensional Fourier transform in angle θ and energy loss w and the exponent -1 indicates a deprojection and inverse Fourier transform, respectively.


Author(s):  
John A. Reffner ◽  
William T. Wihlborg

The IRμs™ is the first fully integrated system for Fourier transform infrared (FT-IR) microscopy. FT-IR microscopy combines light microscopy for morphological examination with infrared spectroscopy for chemical identification of microscopic samples or domains. Because the IRμs system is a new tool for molecular microanalysis, its optical, mechanical and system design are described to illustrate the state of development of molecular microanalysis. Applications of infrared microspectroscopy are reviewed by Messerschmidt and Harthcock.Infrared spectral analysis of microscopic samples is not a new idea, it dates back to 1949, with the first commercial instrument being offered by Perkin-Elmer Co. Inc. in 1953. These early efforts showed promise but failed the test of practically. It was not until the advances in computer science were applied did infrared microspectroscopy emerge as a useful technique. Microscopes designed as accessories for Fourier transform infrared spectrometers have been commercially available since 1983. These accessory microscopes provide the best means for analytical spectroscopists to analyze microscopic samples, while not interfering with the FT-IR spectrometer’s normal functions.


Author(s):  
E. Voelkl ◽  
L. F. Allard

The conventional discrete Fourier transform can be extended to a discrete Extended Fourier transform (EFT). The EFT allows to work with discrete data in close analogy to the optical bench, where continuous data are processed. The EFT includes a capability to increase or decrease the resolution in Fourier space (thus the argument that CCD cameras with a higher number of pixels to increase the resolution in Fourier space is no longer valid). Fourier transforms may also be shifted with arbitrary increments, which is important in electron holography. Still, the analogy between the optical bench and discrete optics on a computer is limited by the Nyquist limit. In this abstract we discuss the capability with the EFT to change the initial sampling rate si of a recorded or simulated image to any other(final) sampling rate sf.


Sign in / Sign up

Export Citation Format

Share Document