Negative Staining of Thinly Spread Biological Particulates

Author(s):  
J. Robin Harris
Keyword(s):  
Author(s):  
A. C. Reimschuessel ◽  
V. Kramer

Staining techniques can be used for either the identification of different polymers or for the differentiation of specific morphological domains within a given polymer. To reveal morphological features in nylon 6, we choose a technique based upon diffusion of the staining agent into accessible regions of the polymer.When a crystallizable polymer - such as nylon 6 - is cooled from the melt, lamellae form by chainfolding of the crystallizing long chain macromolecules. The regions between adjacent lamellae represent the less ordered amorphous domains into which stain can diffuse. In this process the lamellae will be “outlined” by the dense stain, giving rise to contrast comparable to that obtained by “negative” staining techniques.If the cooling of the polymer melt proceeds relatively slowly - as in molding operations - the lamellae are usually arranged in a radial manner. This morphology is referred to as spherulitic.


Author(s):  
S. F. Hayes ◽  
M. D. Corwin ◽  
T. G. Schwan ◽  
D. W. Dorward ◽  
W. Burgdorfer

Characterization of Borrelia burgdorferi strains by means of negative staining EM has become an integral part of many studies related to the biology of the Lyme disease organism. However, relying solely upon negative staining to compare new isolates with prototype B31 or other borreliae is often unsatisfactory. To obtain more satisfactory results, we have relied upon a correlative approach encompassing a variety EM techniques, i.e., scanning for topographical features and cryotomy, negative staining and thin sectioning to provide a more complete structural characterization of B. burgdorferi.For characterization, isolates of B. burgdorferi were cultured in BSK II media from which they were removed by low speed centrifugation. The sedimented borrelia were carefully resuspended in stabilizing buffer so as to preserve their features for scanning and negative staining. Alternatively, others were prepared for conventional thin sectioning and for cryotomy using modified procedures. For thin sectioning, the fixative described by Ito, et al.


1997 ◽  
Vol 3 (S2) ◽  
pp. 341-342
Author(s):  
Sara E. Miller

Negative staining is the most frequently used procedure for preparing particulate specimens, e.g., cell organelles, macromolecules, and viruses, for electron microscopy (Figs. 1-4). The main advantage is that it is rapid, requiring only minutes of preparation time. Another is that it avoids some of the harsh chemicals, e.g., organic solvents, used in thin sectioning. Also, it does not require advanced technical skill. It is widely used in virology, both in classification of viruses as well as diagnosis of viral diseases. Notwithstanding the necessity for fairly high particle counts, virus identification by negative staining is advantageous in not requiring specific reagents such as antibodies, nucleic acid probes, or protein standards which necessitate prior knowledge of potential pathogens for selection of the proper reagent. Furthermore, it does not require viable virions as does growth in tissue culture. Another procedure that uses negative contrasting is ultrathin cryosectioning (Fig. 5).In 1954 Farrant was the first to publish negatively stained material, ferritin particles.


2016 ◽  
Vol 238 ◽  
pp. 70-76 ◽  
Author(s):  
Mitchell K. Monninger ◽  
Chrystal A. Nguessan ◽  
Candace D. Blancett ◽  
Kathleen A. Kuehl ◽  
Cynthia A. Rossi ◽  
...  

1964 ◽  
Vol 20 (2) ◽  
pp. 217-233 ◽  
Author(s):  
G. W. Claus ◽  
L. E. Roth

The morphological features of the cell wall, plasma membrane, protoplasmic constituents, and flagella of Acetobacter suboxydans (ATCC 621) were studied by thin sectioning and negative staining. Thin sections of the cell wall demonstrate an outer membrane and an inner, more homogeneous layer. These observations are consistent with those of isolated, gram-negative cell-wall ghosts and the chemical analyses of gram-negative cell walls. Certain functional attributes of the cell-wall inner layer and the structural comparisons of gram-negative and gram-positive cell walls are considered. The plasma membrane is similar in appearance to the membrane of the cell wall and is occasionally found to be folded into the cytoplasm. Certain features of the protoplasm are described and discussed, including the diffuse states of the chromatinic material that appear to be correlated with the length of the cell and a polar differentiation in the area of expected flagellar attachment. Although the flagella appear hollow in thin sections, negative staining of isolated flagella does not substantiate this finding. Severe physical treatment occasionally produces a localized penetration into the central region of the flagellum, the diameter of which is much smaller then that expected from sections. A possible explanation of this apparent discrepancy is discussed.


1996 ◽  
Vol 243 (2) ◽  
pp. 245-248 ◽  
Author(s):  
Giovanni Candiano ◽  
Matteo Porotto ◽  
Marina Lanciotti ◽  
Gian Marco Ghiggeri

Sign in / Sign up

Export Citation Format

Share Document