Mechanisms of Bacterial Adhesion and Pathogenesis of Implant and Tissue Infections

2003 ◽  
pp. 1-27 ◽  
Author(s):  
Yuehuei H. An ◽  
Richard B. Dickinson ◽  
Ronald J. Doyle
Keyword(s):  
2021 ◽  
Vol 22 (7) ◽  
pp. 3536
Author(s):  
Hongyun Xuan ◽  
Biyun Li ◽  
Feng Xiong ◽  
Shuyuan Wu ◽  
Zhuojun Zhang ◽  
...  

Despite the existence of many attempts at nerve tissue engineering, there is no ideal strategy to date for effectively treating defective peripheral nerve tissue. In the present study, well-aligned poly (L-lactic acid) (PLLA) nanofibers with varied nano-porous surface structures were designed within different ambient humidity levels using the stable jet electrospinning (SJES) technique. Nanofibers have the capacity to inhibit bacterial adhesion, especially with respect to Staphylococcus aureus (S. aureus). It was noteworthy to find that the large nano-porous fibers were less detrimentally affected by S. aureus than smaller fibers. Large nano-pores furthermore proved more conducive to the proliferation and differentiation of neural stem cells (NSCs), while small nano-pores were more beneficial to NSC migration. Thus, this study concluded that well-aligned fibers with varied nano-porous surface structures could reduce bacterial colonization and enhance cellular responses, which could be used as promising material in tissue engineering, especially for neuro-regeneration.


2015 ◽  
Vol 57 ◽  
pp. 88-99 ◽  
Author(s):  
Argelia Almaguer-Flores ◽  
Phaedra Silva-Bermudez ◽  
Rey Galicia ◽  
Sandra E. Rodil

2008 ◽  
Vol 74 (17) ◽  
pp. 5511-5515 ◽  
Author(s):  
Henny C. van der Mei ◽  
Minie Rustema-Abbing ◽  
Joop de Vries ◽  
Henk J. Busscher

ABSTRACT Transition from reversible to irreversible bacterial adhesion is a highly relevant but poorly understood step in initial biofilm formation. We hypothesize that in oral biofilm formation, irreversible adhesion is caused by bond strengthening due to specific bacterial interactions with salivary conditioning films. Here, we compared the initial adhesion of six oral bacterial strains to salivary conditioning films with their adhesion to a bovine serum albumin (BSA) coating and related their adhesion to the strengthening of the binding forces measured with bacteria-coated atomic force microscopy cantilevers. All strains adhered in higher numbers to salivary conditioning films than to BSA coatings, and specific bacterial interactions with salivary conditioning films were accompanied by stronger initial adhesion forces. Bond strengthening occurred on a time scale of several tens of seconds and was slower for actinomyces than for streptococci. Nonspecific interactions between bacteria and BSA coatings strengthened twofold faster than their specific interactions with salivary conditioning films, likely because specific interactions require a closer approach of interacting surfaces with the removal of interfacial water and a more extensive rearrangement of surface structures. After bond strengthening, bacterial adhesion forces with a salivary conditioning film remained stronger than those with BSA coatings.


2011 ◽  
Vol 87 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Bing Fang ◽  
Saugata Gon ◽  
Myoung Park ◽  
Kushi-Nidhi Kumar ◽  
Vincent M. Rotello ◽  
...  

Soft Matter ◽  
2021 ◽  
Author(s):  
Nicolas Lavielle ◽  
Dalal Asker ◽  
Benjamin D. Hatton

Swollen iPDMS silicones generate a liquid interface through syneresis to prevent bacterial adhesion.


2021 ◽  
Vol 11 (7) ◽  
pp. 3232
Author(s):  
Jingyang Zhang ◽  
Sofiya-Roksolana Got ◽  
Iris Xiaoxue Yin ◽  
Edward Chin-Man Lo ◽  
Chun-Hung Chu

Studies have shown that silver diamine fluoride (SDF) is an effective agent to arrest and prevent dental caries due to its mineralizing and antibacterial properties. While plenty of studies have investigated the mineralizing properties, there are few papers that have examined its antibacterial effect on oral biofilm. The objective of this study was to identify the effect of silver diamine fluoride on oral biofilm. Method: The keywords used were (silver diamine fluoride OR silver diammine fluoride OR SDF OR silver fluoride OR AgF AND biofilm OR plaque). Two reviewers screened the titles and abstracts and then retrieved the full text of the potentially eligible publications. Publications of original research investigating the effect of SDF on oral biofilm were selected for this review. Results: This review included 15 laboratory studies and six clinical studies among the 540 papers identified. The laboratory studies found that SDF could prevent bacterial adhesion to the tooth surface. SDF also inhibited the growth of cariogenic bacteria, including Streptococcus mutans, Lactobacillus acidophilus, Streptococcus sobrinus, Lactobacillus rhamnosus, Actinomyces naeslundii, and Enterococcus faecalis, thus contributing to its success in caries arrest. One clinical study reported a decrease in Streptococcus mutans and Lactobacillus sp. in arrested caries after SDF treatment, and another clinical study found that SDF inhibited the growth of periodontitis microbiota, including Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia/nigrescens. However, three clinical studies reported no significant change in the microbial diversity of the plaque on the tooth after SDF treatment. Moreover, one laboratory study and one clinical research study reported that SDF inhibited the growth of Candida albicans. Conclusion: Not many research studies have investigated the effects of SDF on oral biofilm, although SDF has been used as a caries-arresting agent with antibacterial properties. However, a few publications have reported that SDF prevented bacterial adhesion to the teeth, inhibited the growth of cariogenic and periodontal bacteria, and possessed antifungal properties.


Sign in / Sign up

Export Citation Format

Share Document