EFRH–Phage Immunization of Alzheimer's Disease Animal Model Improves Behavioral Performance in Morris Water Maze Trials

2004 ◽  
Vol 24 (1) ◽  
pp. 105-114 ◽  
Author(s):  
Vered Lavie ◽  
Maria Becker ◽  
Rachel Cohen-Kupiec ◽  
Iftach Yacoby ◽  
Rela Koppel ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jing Jiang ◽  
Gang Liu ◽  
Suhua Shi ◽  
Zhigang Li

Objectives. To compare musical electroacupuncture and electroacupuncture in a mouse model of Alzheimer’s disease.Methods. In this study, 7.5-month-old male senescence-accelerated mouse prone 8 (SAMP8) mice were used as an Alzheimer’s disease animal model. In the normal control paradigm, 7.5-month-old male SAMR1 mice were used as the blank control group (N group). After 15 days of treatment, using Morris water maze test, micro-PET, and immunohistochemistry, the differences among the musical electroacupuncture (MEA), electroacupuncture (EA), Alzheimer’s disease (AD), and normal (N) groups were assessed.Results. The Morris water maze test, micro-PET, and immunohistochemistry revealed that MEA and EA therapies could improve spatial learning and memory ability, glucose metabolism level in the brain, and Aβamyloid content in the frontal lobe, compared with the AD group (P<0.05). Moreover, MEA therapy performed better than EA treatment in decreasing amyloid-beta levels in the frontal lobe of mice with AD.Conclusion. MEA therapy may be superior to EA in treating Alzheimer’s disease as demonstrated in SAMP8 mice.


2020 ◽  
Vol 14 ◽  
Author(s):  
Smitha Karunakaran

Mild behavioral deficits, which are part of normal aging, can be early indicators of an impending Alzheimer's disease. Using the APPswe/PS1dE9 (APP/PS1) mouse model of Alzheimer's disease, we utilized the Morris water maze spatial learning paradigm to systematically evaluate mild behavioral deficits that occur during the early stages of disease pathogenesis. Conventional behavioral analysis using this model indicates that spatial memory is intact at 2 months of age. In this study, we used an alternative method to analyze the behavior of mice, aiming to gain a better understanding of the nature of cognitive deficits by focusing on the unsuccessful trials during water maze learning rather than on the successful ones. APP/PS1 mice displayed a higher number of unsuccessful trials during the initial days of training, unlike their wild-type counterparts. However, with repeated trial and error, learning in APP/PS1 reached levels comparable to that of the wild-type mice during the later days of training. Individual APP/PS1 mice preferred a non-cognitive search strategy called circling, which led to abrupt learning transitions and an increased number of unsuccessful trials. These findings indicate the significance of subtle intermediate readouts as early indicators of conditions such as Alzheimer's disease.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Kathrin Gnoth ◽  
Anke Piechotta ◽  
Martin Kleinschmidt ◽  
Sandra Konrath ◽  
Mathias Schenk ◽  
...  

Abstract Background Amyloid β (Aβ)-directed immunotherapy has shown promising results in preclinical and early clinical Alzheimer’s disease (AD) trials, but successful translation to late clinics has failed so far. Compelling evidence suggests that post-translationally modified Aβ peptides might play a decisive role in onset and progression of AD and first clinical trials targeting such Aβ variants have been initiated. Modified Aβ represents a small fraction of deposited material in plaques compared to pan-Aβ epitopes, opening up pathways for tailored approaches of immunotherapy. Here, we generated the first monoclonal antibodies that recognize l-isoaspartate-modified Aβ (isoD7-Aβ) and tested a lead antibody molecule in 5xFAD mice. Methods This work comprises a combination of chemical and biochemical techniques as well as behavioral analyses. Aβ peptides, containing l-isoaspartate at position 7, were chemically synthesized and used for immunization of mice and antibody screening methods. Biochemical methods included anti-isoD7-Aβ monoclonal antibody characterization by surface plasmon resonance, immunohistochemical staining of human and transgenic mouse brain, and the development and application of isoD7-Aβ ELISA as well as different non-modified Aβ ELISA. For antibody treatment studies, 12 mg/kg anti-isoD7-Aβ antibody K11_IgG2a was applied intraperitoneally to 5xFAD mice for 38 weeks. Treatment controls implemented were IgG2a isotype as negative and 3D6_IgG2a, the parent molecule of bapineuzumab, as positive control antibodies. Behavioral studies included elevated plus maze, pole test, and Morris water maze. Results Our advanced antibody K11 showed a KD in the low nM range and > 400fold selectivity for isoD7-Aβ compared to other Aβ variants. By using this antibody, we demonstrated that formation of isoD7-Aβ may occur after formation of aggregates; hence, the presence of the isoD7-modification differentiates aged Aβ from newly formed peptides. Importantly, we also show that the Tottori mutation responsible for early-onset AD in a Japanese pedigree is characterized by massively accelerated formation of isoD7-Aβ in cell culture. The presence of isoD7-Aβ was verified by K11 in post mortem human cortex and 5xFAD mouse brain tissue. Passive immunization of 5xFAD mice resulted in a significant reduction of isoD7-Aβ and total Aβ in brain. Amelioration of cognitive impairment was demonstrated by Morris water maze, elevated plus maze, pole, and contextual fear conditioning tests. Interestingly, despite the lower abundance of the isoD7-Aβ epitope, the application of anti-isoD7-Aβ antibodies showed comparable treatment efficacy in terms of reduction of brain amyloid and spatial learning but did not result in an increase of plasma Aβ concentration as observed with 3D6 treatment. Conclusions The present study demonstrates, for the first time, that the antibody-mediated targeting of isoD7-modified Aβ peptides leads to attenuation of AD-like amyloid pathology. In conjunction with previously published data on antibodies directed against pGlu-modified Aβ, the results highlight the crucial role of modified Aβ peptides in AD pathophysiology. Hence, the results also underscore the therapeutic potential of targeting modified amyloid species for defining tailored approaches in AD therapy.


Sign in / Sign up

Export Citation Format

Share Document