scholarly journals Exercise training modulates peritoneal macrophages and adipose tissue macrophages polarization independent PPAR-γ

Author(s):  
Alexandre Abilio de Souza Teixeira ◽  
et. al.
2021 ◽  
Vol 9 (1) ◽  
pp. e001431
Author(s):  
Long Li ◽  
Caoxin Huang ◽  
Hongyan Yin ◽  
Xiaofang Zhang ◽  
Dongmei Wang ◽  
...  

IntroductionExercise training has been shown to be the most effective strategy to combat obesity and non-alcoholic fatty liver disease. However, exercise promotes loss of adipose tissue mass and improves obesity-related hepatic steatosis through mechanisms that remain obscure.Research design and methodsTo study the role of interleukin-6 (IL-6) in high-fat diet (HFD)-induced adiposity and hepatic steatosis during treadmill running, IL-6 knockout (IL-6 KO) mice and wild-type (WT) mice were randomly divided into lean, obese (fed a HFD) and trained obese groups (fed a HFD and exercise trained).ResultsAfter 20 weeks of HFD feeding and 8 weeks of treadmill running, we found that exercise obviously reduced HFD-induced body weight gain, inhibited visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) expansion and almost completely reversed obesity-related intrahepatic fat accumulation in WT mice. However, IL-6 knockout (IL-6 KO) mice are refractory to the benefits of treadmill training on body weight, VAT and SAT mass elevation, and hepatic steatosis. Moreover, a panel of lipolytic-related and thermogenic-related genes, including ATGL, HSL and PGC-1α, was upregulated in the VAT and SAT of WT mice that received exercise training compared with untrained mice, which was not observed in IL-6 KO mice. In addition, exercise training resulted in a significant inhibition of hepatic peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in WT mice, and these effects were not noted in IL-6 KO mice.ConclusionThese results revealed that IL-6 is involved in the prevention of obesity and hepatic fat accumulation during exercise training. The mechanisms underlying these antiobesity effects may be associated with enhanced lipolysis and thermogenesis in white adipose tissue. The improvement in hepatic steatosis by exercise training may benefit from the marked inhibition of PPAR-γ expression by IL-6.


2009 ◽  
Vol 258 (2) ◽  
pp. 138-146 ◽  
Author(s):  
Josep Bassaganya-Riera ◽  
Sarah Misyak ◽  
Amir J. Guri ◽  
Raquel Hontecillas

2019 ◽  
Vol 7 (1) ◽  
pp. e000751 ◽  
Author(s):  
Lisa Willemsen ◽  
Annette E Neele ◽  
Saskia van der Velden ◽  
Koen H M Prange ◽  
Myrthe den Toom ◽  
...  

IntroductionObesity is recognized as a risk factor for various microbial infections. The immune system, which is affected by obesity, plays an important role in the pathophysiology of these infections and other obesity-related comorbidities. Weight loss is considered the most obvious treatment for obesity. However, multiple studies suggest that the comorbidities of obesity may persist after weight loss. Deregulation of immune cells including adipose tissue macrophages of obese individuals has been extensively studied, but how obesity and subsequent weight loss affect immune cell function outside adipose tissue is not well defined.Research design and methodsHere we investigated the phenotype of non-adipose tissue macrophages by transcriptional characterization of thioglycollate-elicited peritoneal macrophages (PM) from mice with diet-induced obesity and type 2 diabetes (T2D). Subsequently, we defined the characteristics of PMs after weight loss and mimicked a bacterial infection by exposing PMs to lipopolysaccharide.Results and conclusionsIn contrast to the proinflammatory phenotype of adipose tissue macrophages in obesity and T2D, we found a deactivated state of PMs in obesity and T2D. Weight loss could reverse this deactivated macrophage phenotype. Anti-inflammatory characteristics of these non-adipose macrophages may explain why patients with obesity and T2D have an impaired immune response against pathogens. Our data also suggest that losing weight restores macrophage function and thus contributes to the reduction of immune-related comorbidities in patients.


2007 ◽  
Vol 292 (1) ◽  
pp. E166-E174 ◽  
Author(s):  
Carey N. Lumeng ◽  
Stephanie M. Deyoung ◽  
Alan R. Saltiel

Obesity leads to a proinflammatory state with immune responses that include infiltration of adipose tissue with macrophages. These macrophages are believed to alter insulin sensitivity in adipocytes, but the mechanisms that underlie this effect have not been characterized. We have explored the interaction between macrophages and adipocytes in the context of both indirect and direct coculture. Macrophage-secreted factors blocked insulin action in adipocytes via downregulation of GLUT4 and IRS-1, leading to a decrease in Akt phosphorylation and impaired insulin-stimulated GLUT4 translocation to the plasma membrane. GLUT1 was upregulated with a concomitant increase in basal glucose uptake. These changes recapitulate those seen in adipose tissue from insulin-resistant humans and animal models. TNF-α-neutralizing antibodies partially reversed the insulin resistance produced by macrophage-conditioned media. Peritoneal macrophages and macrophage-enriched stromal vascular cells from adipose tissue also attenuated responsiveness to insulin in a manner correlating with inflammatory cytokine secretion. Adipose tissue macrophages from obese mice have an F4/80+CD11b+CD68+CD14− phenotype and form long cellular extensions in culture. Peritoneal macrophages take on similar characteristics in direct coculture with adipocytes and induce proinflammatory cytokines, suggesting that macrophage activation state is influenced by contact with adipocytes. Thus both indirect/secreted and direct/cell contact-mediated factors derived from macrophages influence insulin sensitivity in adipocytes.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 731-P
Author(s):  
MICHAEL W. SCHLEH ◽  
BENJAMIN J. RYAN ◽  
JENNA B. GILLEN ◽  
PALLAVI VARSHNEY ◽  
KATIE FOUG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document