scholarly journals Relationship between motor learning and reaction capacity in motor task

Author(s):  
Felice Di Domenico ◽  
Simona Fattore ◽  
Salvatore Pignato ◽  
Tiziana D'Isanto
2018 ◽  
Vol 120 (1) ◽  
pp. 239-249 ◽  
Author(s):  
James E. Gehringer ◽  
David J. Arpin ◽  
Elizabeth Heinrichs-Graham ◽  
Tony W. Wilson ◽  
Max J. Kurz

Although it is well appreciated that practicing a motor task updates the associated internal model, it is still unknown how the cortical oscillations linked with the motor action change with practice. The present study investigates the short-term changes (e.g., fast motor learning) in the α- and β-event-related desynchronizations (ERD) associated with the production of a motor action. To this end, we used magnetoencephalography to identify changes in the α- and β-ERD in healthy adults after participants practiced a novel isometric ankle plantarflexion target-matching task. After practicing, the participants matched the targets faster and had improved accuracy, faster force production, and a reduced amount of variability in the force output when trying to match the target. Parallel with the behavioral results, the strength of the β-ERD across the motor-planning and execution stages was reduced after practice in the sensorimotor and occipital cortexes. No pre/postpractice changes were found in the α-ERD during motor planning or execution. Together, these outcomes suggest that fast motor learning is associated with a decrease in β-ERD power. The decreased strength likely reflects a more refined motor plan, a reduction in neural resources needed to perform the task, and/or an enhancement of the processes that are involved in the visuomotor transformations that occur before the onset of the motor action. These results may augment the development of neurologically based practice strategies and/or lead to new practice strategies that increase motor learning. NEW & NOTEWORTHY We aimed to determine the effects of practice on the movement-related cortical oscillatory activity. Following practice, we found that the performance of the ankle plantarflexion target-matching task improved and the power of the β-oscillations decreased in the sensorimotor and occipital cortexes. These novel findings capture the β-oscillatory activity changes in the sensorimotor and occipital cortexes that are coupled with behavioral changes to demonstrate the effects of motor learning.


2020 ◽  
Author(s):  
Andres P Varani ◽  
Romain W Sala ◽  
Caroline Mailhes-Hamon ◽  
Jimena L Frontera ◽  
Clément Léna ◽  
...  

SUMMARYThe contribution of cerebellum to motor learning is often considered to be limited to adaptation, a short-timescale tuning of reflexes and previous learned skills. Yet, the cerebellum is reciprocally connected to two main players of motor learning, the motor cortex and the basal ganglia, via the ventral and midline thalamus respectively. Here, we evaluated the contribution of cerebellar neurons projecting to these thalamic nuclei in a skilled locomotion task in mice. In the cerebellar nuclei, we found task-specific neuronal activities during the task, and lasting changes after the task suggesting an offline processing of task-related information. Using pathway-specific inhibition, we found that dentate neurons projecting to the midline thalamus contribute to learning and retrieval, while interposed neurons projecting to the ventral thalamus contribute to the offline consolidation of savings. Our results thus show that two parallel cerebello-thalamic pathways perform distinct computations operating on distinct timescales in motor learning.


2019 ◽  
Author(s):  
Rodrigo S. Maeda ◽  
Paul L. Gribble ◽  
J. Andrew Pruszynski

AbstractPrevious work has demonstrated that when learning a new motor task, the nervous system modifies feedforward (ie. voluntary) motor commands and that such learning transfers to fast feedback (ie. reflex) responses evoked by mechanical perturbations. Here we show the inverse, that learning new feedback responses transfers to feedforward motor commands. Sixty human participants (34 females) used a robotic exoskeleton and either 1) received short duration mechanical perturbations (20 ms) that created pure elbow rotation or 2) generated self-initiated pure elbow rotations. They did so with the shoulder joint free to rotate (normal arm dynamics) or locked (altered arm dynamics) by the robotic manipulandum. With the shoulder unlocked, the perturbation evoked clear shoulder muscle activity in the long-latency stretch reflex epoch (50-100ms post-perturbation), as required for countering the imposed joint torques, but little muscle activity thereafter in the so-called voluntary response. After locking the shoulder joint, which alters the required joint torques to counter pure elbow rotation, we found a reliable reduction in the long-latency stretch reflex over many trials. This reduction transferred to feedforward control as we observed 1) a reduction in shoulder muscle activity during self-initiated pure elbow rotation trials and 2) kinematic errors (ie. aftereffects) in the direction predicted when failing to compensate for normal arm dynamics, even though participants never practiced self-initiated movements with the shoulder locked. Taken together, our work shows that transfer between feedforward and feedback control is bidirectional, furthering the notion that these processes share common neural circuits that underlie motor learning and transfer.


2021 ◽  
Vol 288 (1942) ◽  
pp. 20202556
Author(s):  
R. Hamel ◽  
L. Dallaire-Jean ◽  
É. De La Fontaine ◽  
J. F. Lepage ◽  
P. M. Bernier

Anterograde interference emerges when two differing tasks are learned in close temporal proximity, an effect repeatedly attributed to a competition between differing task memories. However, recent development alternatively suggests that initial learning may trigger a refractory period that occludes neuroplasticity and impairs subsequent learning, consequently mediating interference independently of memory competition. Accordingly, this study tested the hypothesis that interference can emerge when the same motor task is being learned twice, that is when competition between memories is prevented. In a first experiment, the inter-session interval (ISI) between two identical motor learning sessions was manipulated to be 2 min, 1 h or 24 h. Results revealed that retention of the second session was impaired as compared to the first one when the ISI was 2 min but not when it was 1 h or 24 h, indicating a time-dependent process. Results from a second experiment replicated those of the first one and revealed that adding a third motor learning session with a 2 min ISI further impaired retention, indicating a dose-dependent process. Results from a third experiment revealed that the retention impairments did not take place when a learning session was preceded by simple rehearsal of the motor task without concurrent learning, thus ruling out fatigue and confirming that retention is impaired specifically when preceded by a learning session. Altogether, the present results suggest that competing memories is not the sole mechanism mediating anterograde interference and introduce the possibility that a time- and dose-dependent refractory period—independent of fatigue—also contributes to its emergence. One possibility is that learning transiently perturbs the homeostasis of learning-related neuronal substrates. Introducing additional learning when homeostasis is still perturbed may not only impair performance improvements, but also memory formation.


2020 ◽  
Vol 10 (11) ◽  
pp. 875 ◽  
Author(s):  
Pierre Besson ◽  
Makii Muthalib ◽  
Christophe De Vassoigne ◽  
Jonh Rothwell ◽  
Stephane Perrey

A single session of priming cathodal transcranial direct current stimulation (tDCS) prior to anodal tDCS (c-a-tDCS) allows cumulative effects on motor learning and retention. However, the impact of multiple sessions of c-a-tDCS priming on learning and retention remains unclear. Here, we tested whether multiple sessions of c-a-tDCS (over 3 consecutive days) applied over the left sensorimotor cortex can further enhance motor learning and retention of an already learned visuo-motor task as compared to anodal tDCS (a-tDCS) or sham. In a between group and randomized double-blind sham-controlled study design, 25 participants separated in 3 independent groups underwent 2 days of baseline training without tDCS followed by 3-days of training with both online and offline tDCS, and two retention tests (1 and 14 days later). Each training block consisted of five trials of a 60 s circular-tracing task intersected by 60 s rest, and performance was assessed in terms of speed–accuracy trade-off represented notably by an index of performance (IP). The main findings of this exploratory study were that multiple sessions of c-a-tDCS significantly further enhanced IP above baseline training levels over the 3 training days that were maintained over the 2 retention days, but these learning and retention performance changes were not significantly different from the sham group. Subtle differences in the changes in speed–accuracy trade-off (components of IP) between c-a-tDCS (maintenance of accuracy over increasing speed) and a-tDCS (increasing speed over maintenance of accuracy) provide preliminary insights to a mechanistic modulation of motor performance with priming and polarity of tDCS.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Zijing Xie ◽  
Fangyuan Cui ◽  
Yihuai Zou ◽  
Lijun Bai

Recent neuroimaging studies have demonstrated that stimulation of acupuncture at motor-implicated acupoints modulates activities of brain areas relevant to the processing of motor functions. This study aims to investigate acupuncture-induced changes in effective connectivity among motor areas in hemiparetic stroke patients by using the multivariate Granger causal analysis. A total of 9 stable recovery stroke patients and 8 healthy controls were recruited and underwent three runs of fMRI scan: passive finger movements and resting state before and after manual acupuncture stimuli. Stroke patients showed significantly attenuated effective connectivity between cortical and subcortical areas during passive motor task, which indicates inefficient information transmissions between cortical and subcortical motor-related regions. Acupuncture at motor-implicated acupoints showed specific modulations of motor-related network in stroke patients relative to healthy control subjects. This specific modulation enhanced bidirectionally effective connectivity between the cerebellum and primary sensorimotor cortex in stroke patients, which may compensate for the attenuated effective connectivity between cortical and subcortical areas during passive motor task and, consequently, contribute to improvement of movement coordination and motor learning in subacute stroke patients. Our results suggested that further efficacy studies of acupuncture in motor recovery can focus on the improvement of movement coordination and motor learning during motor rehabilitation.


2004 ◽  
Vol 21 (3) ◽  
pp. 1-16 ◽  
Author(s):  
Niamh Tunney ◽  
Leslie F. Taylor ◽  
Mandy Gaddy ◽  
Amie Rosenfeld ◽  
Neal Pearce ◽  
...  
Keyword(s):  

2018 ◽  
Vol 119 (1) ◽  
pp. 337-346 ◽  
Author(s):  
Gergely Silasi ◽  
Jamie D. Boyd ◽  
Federico Bolanos ◽  
Jeff M. LeDue ◽  
Stephen H. Scott ◽  
...  

Skilled forelimb function in mice is traditionally studied through behavioral paradigms that require extensive training by investigators and are limited by the number of trials individual animals are able to perform within a supervised session. We developed a skilled lever positioning task that mice can perform within their home cage. The task requires mice to use their forelimb to precisely hold a lever mounted on a rotary encoder within a rewarded position to dispense a water reward. A Raspberry Pi microcomputer is used to record lever position during trials and to control task parameters, thus making this low-footprint apparatus ideal for use within animal housing facilities. Custom Python software automatically increments task difficulty by requiring a longer hold duration, or a more accurate hold position, to dispense a reward. The performance of individual animals within group-housed mice is tracked through radio-frequency identification implants, and data stored on the microcomputer may be accessed remotely through an active internet connection. Mice continuously engage in the task for over 2.5 mo and perform ~500 trials/24 h. Mice required ~15,000 trials to learn to hold the lever within a 10° range for 1.5 s and were able to further refine movement accuracy by limiting their error to a 5° range within each trial. These results demonstrate the feasibility of autonomously training group-housed mice on a forelimb motor task. This paradigm may be used in the future to assess functional recovery after injury or cortical reorganization induced by self-directed motor learning. NEW & NOTEWORTHY We developed a low-cost system for fully autonomous training of group-housed mice on a forelimb motor task. We demonstrate the feasibility of tracking both end-point, as well as kinematic performance of individual mice, with each performing thousands of trials over 2.5 mo. The task is run and controlled by a Raspberry Pi microcomputer, which allows for cages to be monitored remotely through an active internet connection.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Najah Alhajri ◽  
Nicola J. Hodges ◽  
Jill G. Zwicker ◽  
Naznin Virji-Babul

Research has shown the effectiveness of observational practice for motor learning, but there continues to be debate about the mechanisms underlying effectiveness. Although cortical processes can be moderated during observation, after both physical and observational practice, how these processes change with respect to behavioural measures of learning has not been studied. Here we compared short-term physical and observational practice during the acquisition and retention of a novel motor task to evaluate how each type of practice modulates EEG mu rhythm (8–13 Hz). Thirty healthy individuals were randomly assigned to one of three groups: (1) physical practice (PP), (2) observational practice (OP), and (3) no practice (NP) control. There were four testing stages: baseline EEG, practice, postpractice observation, and delayed retention. There was significant bilateral suppression of mu rhythm during PP but only left lateralized mu suppression during OP. In the postpractice observation phase, mu suppression was bilateral and larger after PP compared to that after OP. NP control showed no evidence of suppression and was significantly different to both the OP and PP groups. When comparing the three groups in retention, the groups did not differ with respect to tracing times, but the PP group showed fewer errors, especially in comparison to the NP group. Therefore, although the neurophysiological measures index changes in the OP group, which are similar but moderated in comparison to PP, changes in these processes are not manifest in observational practice outcomes when assessed in a delayed retention test.


2018 ◽  
Vol 119 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Marco Cardis ◽  
Maura Casadio ◽  
Rajiv Ranganathan

Motor variability plays an important role in motor learning, although the exact mechanisms of how variability affects learning are not well understood. Recent evidence suggests that motor variability may have different effects on learning in redundant tasks, depending on whether it is present in the task space (where it affects task performance) or in the null space (where it has no effect on task performance). We examined the effect of directly introducing null and task space variability using a manipulandum during the learning of a motor task. Participants learned a bimanual shuffleboard task for 2 days, where their goal was to slide a virtual puck as close as possible toward a target. Critically, the distance traveled by the puck was determined by the sum of the left- and right-hand velocities, which meant that there was redundancy in the task. Participants were divided into five groups, based on both the dimension in which the variability was introduced and the amount of variability that was introduced during training. Results showed that although all groups were able to reduce error with practice, learning was affected more by the amount of variability introduced rather than the dimension in which variability was introduced. Specifically, groups with higher movement variability during practice showed larger errors at the end of practice compared with groups that had low variability during learning. These results suggest that although introducing variability can increase exploration of new solutions, this may adversely affect the ability to retain the learned solution.NEW & NOTEWORTHY We examined the role of introducing variability during motor learning in a redundant task. The presence of redundancy allows variability to be introduced in different dimensions: the task space (where it affects task performance) or the null space (where it does not affect task performance). We found that introducing variability affected learning adversely, but the amount of variability was more critical than the dimension in which variability was introduced.


Sign in / Sign up

Export Citation Format

Share Document