scholarly journals Combining heterogeneous inputs for the development of adaptive and multimodal interaction systems

Author(s):  
David Griol ◽  
Jesús García-Herrero ◽  
José Manuel Molina

In this paper we present a novel framework for the integration of visual sensor networks and speech-based interfaces. Our proposal follows the standard reference architecture in fusion systems (JDL), and combines different techniques related to Artificial Intelligence, Natural Language Processing and User Modeling to provide an enhanced interaction with their users. Firstly, the framework integrates a Cooperative Surveillance Multi-Agent System (CS-MAS), which includes several types of autonomous agents working in a coalition to track and make inferences on the positions of the targets. Secondly, enhanced conversational agents facilitate human-computer interaction by means of speech interaction. Thirdly, a statistical methodology allows modeling the user conversational behavior, which is learned from an initial corpus and improved with the knowledge acquired from the successive interactions. A technique is proposed to facilitate the multimodal fusion of these information sources and consider the result for the decision of the next system action.

2021 ◽  
Vol 10 (2) ◽  
pp. 27
Author(s):  
Roberto Casadei ◽  
Gianluca Aguzzi ◽  
Mirko Viroli

Research and technology developments on autonomous agents and autonomic computing promote a vision of artificial systems that are able to resiliently manage themselves and autonomously deal with issues at runtime in dynamic environments. Indeed, autonomy can be leveraged to unburden humans from mundane tasks (cf. driving and autonomous vehicles), from the risk of operating in unknown or perilous environments (cf. rescue scenarios), or to support timely decision-making in complex settings (cf. data-centre operations). Beyond the results that individual autonomous agents can carry out, a further opportunity lies in the collaboration of multiple agents or robots. Emerging macro-paradigms provide an approach to programming whole collectives towards global goals. Aggregate computing is one such paradigm, formally grounded in a calculus of computational fields enabling functional composition of collective behaviours that could be proved, under certain technical conditions, to be self-stabilising. In this work, we address the concept of collective autonomy, i.e., the form of autonomy that applies at the level of a group of individuals. As a contribution, we define an agent control architecture for aggregate multi-agent systems, discuss how the aggregate computing framework relates to both individual and collective autonomy, and show how it can be used to program collective autonomous behaviour. We exemplify the concepts through a simulated case study, and outline a research roadmap towards reliable aggregate autonomy.


2021 ◽  
Author(s):  
Marciane Mueller ◽  
Rejane Frozza ◽  
Liane Mählmann Kipper ◽  
Ana Carolina Kessler

BACKGROUND This article presents the modeling and development of a Knowledge Based System, supported by the use of a virtual conversational agent called Dóris. Using natural language processing resources, Dóris collects the clinical data of patients in care in the context of urgency and hospital emergency. OBJECTIVE The main objective is to validate the use of virtual conversational agents to properly and accurately collect the data necessary to perform the evaluation flowcharts used to classify the degree of urgency of patients and determine the priority for medical care. METHODS The agent's knowledge base was modeled using the rules provided for in the evaluation flowcharts comprised by the Manchester Triage System. It also allows the establishment of a simple, objective and complete communication, through dialogues to assess signs and symptoms that obey the criteria established by a standardized, validated and internationally recognized system. RESULTS Thus, in addition to verifying the applicability of Artificial Intelligence techniques in a complex domain of health care, a tool is presented that helps not only in the perspective of improving organizational processes, but also in improving human relationships, bringing professionals and patients closer. The system's knowledge base was modeled on the IBM Watson platform. CONCLUSIONS The results obtained from simulations carried out by the human specialist allowed us to verify that a knowledge-based system supported by a virtual conversational agent is feasible for the domain of risk classification and priority determination of medical care for patients in the context of emergency care and hospital emergency.


Author(s):  
Kun Zhang ◽  
◽  
Yoichiro Maeda ◽  
Yasutake Takahashi ◽  

Research on multi-agent systems, in which autonomous agents are able to learn cooperative behavior, has been the subject of rising expectations in recent years. We have aimed at the group behavior generation of the multi-agents who have high levels of autonomous learning ability, like that of human beings, through social interaction between agents to acquire cooperative behavior. The sharing of environment states can improve cooperative ability, and the changing state of the environment in the information shared by agents will improve agents’ cooperative ability. On this basis, we use reward redistribution among agents to reinforce group behavior, and we propose a method of constructing a multi-agent system with an autonomous group creation ability. This is able to strengthen the cooperative behavior of the group as social agents.


Author(s):  
Adriana L Iñiguez-Carrillo ◽  
Laura S Gaytán-Lugo ◽  
Rocío Maciel-Arellano ◽  
Miguel A García-Ruiz ◽  
Daniel Aréchiga

This paper describes and analyzes the state of research in Voice User Interfaces (VUIs) in Latin America based on the review of scientific documents published in SCOPUS from 1999 to June 2020, through a bibliometric analysis. We analyzed 419 academic papers. Although a gradual increase is observed over the years, the number of published documents has increased considerably since 2014. Brazil (44%) and Mexico (28%) are the countries with more documents published. Co-authorship occurs between Latin American countries (Brazil, Argentina, Mexico, Ecuador, and Costa Rica). However, the mayor collaboration from Latin American countries occurs with the United States, France, Germany, Spain, Portugal, the United Kingdom, and Japan. The main researched topics are studies of automatic speech recognition, artificial intelligence, speech processing, and human-computer interaction, which have grown over the past few years. Natural language processing, conversational agents, user experience, and chatbots are keywords related to more recent studies. Our analysis reveals that the primary active research developed in the short-term future are personal assistants and assistive technology using voice user interfaces.


2021 ◽  
Vol 16 (4) ◽  
pp. 54-69
Author(s):  
Yaqing Hou ◽  
Xiangchao Yu ◽  
Yifeng Zeng ◽  
Ziqi Wei ◽  
Haijun Zhang ◽  
...  

2019 ◽  
pp. 1134-1143
Author(s):  
Deepshikha Bhargava

Over decades new technologies, algorithms and methods are evolved and proposed. We can witness a paradigm shift from typewriters to computers, mechanics to mechnotronics, physics to aerodynamics, chemistry to computational chemistry and so on. Such advancements are the result of continuing research; which is still a driving force of researchers. In the same way, the research in the field of artificial intelligence (Russell, Stuart & Norvig, 2003) is major thrust area of researchers. Research in AI have coined different concepts like natural language processing, expert systems, software agents, learning, knowledge management, robotics to name a few. The objective of this chapter is to highlight the research path from software agents to robotics. This chapter begins with the introduction of software agents. The chapter further progresses with the discussion on intelligent agent, autonomous agents, autonomous robots, intelligent robots in different sections. The chapter finally concluded with the fine line between intelligent agents and autonomous robots.


Author(s):  
Anet Potgieter ◽  
Judith Bishop

Most agent architectures implement autonomous agents that use extensive interaction protocols and social laws to control interactions in order to ensure that the correct behaviors result during run-time. These agents, organized into multi-agent systems in which all agents adhere to predefined interaction protocols, are well suited to the analysis, design and implementation of complex systems in environments where it is possible to predict interactions during the analysis and design phases. In these multi-agent systems, intelligence resides in individual autonomous agents, rather than in the collective behavior of the individual agents. These agents are commonly referred to as “next-generation” or intelligent components, which are difficult to implement using current component-based architectures. In most distributed environments, such as the Internet, it is not possible to predict interactions during analysis and design. For a complex system to be able to adapt in such an uncertain and non-deterministic environment, we propose the use of agencies, consisting of simple agents, which use probabilistic reasoning to adapt to their environment. Our agents collectively implement distributed Bayesian networks, used by the agencies to control behaviors in response to environmental states. Each agency is responsible for one or more behaviors, and the agencies are structured into heterarchies according to the topology of the underlying Bayesian networks. We refer to our agents and agencies as “Bayesian agents” and “Bayesian agencies.”


Author(s):  
Manuel Kolp ◽  
Yves Wautelet ◽  
Samedi Heng

Multi-agent systems (MAS) architectures are popular for building open, distributed, and evolving software required by today's business IT applications such as e-business systems, web services, or enterprise knowledge bases. Since the fundamental concepts of MAS are social and intentional rather than object, functional, or implementation-oriented, the design of MAS architectures can be eased by using social patterns. They are detailed agent-oriented design idioms to describe MAS architectures as composed of autonomous agents that interact and coordinate to achieve their intentions like actors in human organizations. This chapter presents social patterns and focuses on a framework aimed to gain insight into these patterns. The framework can be integrated into agent-oriented software engineering methodologies used to build MAS. The authors consider the broker social pattern to illustrate the framework. The mapping from system architectural design (through organizational architectural styles), to system detailed design (through social patterns), is overviewed with a data integration case study.


Sign in / Sign up

Export Citation Format

Share Document