scholarly journals An alternative design and implementation of a solid state on-load tap changer

2021 ◽  
Vol 12 (2) ◽  
pp. 104-109
Author(s):  
Benjamin Kommey ◽  
Elvis Tamakloe ◽  
Gideon Adom-Bamfi ◽  
Daniel Opoku

Power quality and reliability are of great importance in the modern world, whether it be the power generated by the power utilities or the power consumed by the customer respectively. They need these supplies to be at its optimum value so that the cost is effective, and the safety of devices assured otherwise problems such as overvoltage, under-voltage, and voltage sags caused by disturbances in the power supply could be disastrous. On-load tap changers (OLTC) have therefore been used since the inception of electrical engineering. The main function of the OLTC is to change the turns of the transformer winding so that the voltage variations are limited without interrupting the secondary current.The major idea is that the electronic switches and other smart systems provide more controllability during the tap changing process, unlike mechanical switches.This paper presents an alternative design and implementation of a low-cost solid-state OLTC and employs a control strategy that is microcontroller-based, ensuring the desired flexibility and controllability required in programming the control algorithms.It eliminates the limitations of both mechanical and hybrid OLTCs (arcing, slow response time, losses) and is user-friendly (provides an effective communication medium). Voltage regulation is achieved by varying the turns of the transformer winding whiles it is energized, supplying load current and with the tap selection carried out on the primary side. Therefore, this approach provides a less expensive system but ensures the efficiency and reliability of voltage regulation.

Author(s):  
Pallavi Thakkur ◽  
Smita Shandilya

Self-Excited Induction Generator (SEIG) offers many advantages such as low cost, simplicity, robust construction, self-protection against faults and maintenance free in today's renewable energy industry. However, the SEIG demands an external supply of reactive power to maintain the constant terminal voltage under the varying loading conditions, which limits the application of SEIG as a standalone power generator. The regulation of speed and voltage does not result in a satisfactory improvement although several studies have been emphasized on this topic in the past. To improve the performance of the SEIG system in isolated areas and to regulate the terminal voltage STATic COMpensator (STATCOM) has been modelled and developed in this dissertation. The STATCOM consists of AC inductors, a DC bus capacitor and solid-state self-commutating devices. The ratings of these components are quite important for designing and controlling of STATCOM to maintain the constant terminal voltage. The proposed generating system is modelled and simulated in MATLAB along with Simulink and sim power system block set toolboxes. The simulated results are presented to demonstrate the capability of an isolated power generating system for feeding three-phase resistive loads.


2021 ◽  
Vol 11 (6) ◽  
pp. 2803
Author(s):  
Jae-Woo Kim ◽  
Dong-Seong Kim ◽  
Seung-Hwan Kim ◽  
Sang-Moon Shin

A quad, small form-factor pluggable 28 Gbps optical transceiver design scheme is proposed. It is capable of transmitting 50 Gbps of data up to a distance of 40 km using modulation signals with a level-four pulse-amplitude. The proposed scheme is designed using a combination of electro-absorption-modulated lasers, transmitter optical sub-assembly, low-cost positive-intrinsic-native photodiodes, and receiver optical sub-assembly to achieve standard performance and low cost. Moreover, the hardware and firmware design schemes to implement the optical transceiver are presented. The results confirm the effectiveness of the proposed scheme and the performance of the manufactured optical transceiver, thereby confirming its applicability to real industrial sites.


HardwareX ◽  
2021 ◽  
pp. e00186
Author(s):  
Adolf Krige ◽  
Jakub Haluška ◽  
Ulrika Rova ◽  
Paul Christakopoulos

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1192
Author(s):  
Hisham S. M. Abd-Rabboh ◽  
Abd El-Galil E. Amr ◽  
Abdulrahman A. Almehizia ◽  
Ayman H. Kamel

In recent times, the application of the use of ion-selective electrodes has expanded in the field of pharmaceutical analyses due to their distinction from other sensors in their high selectivity and low cost of measurement, in addition to their high measurement sensitivity. Cost-effective, reliable, and robust all-solid-state potentiometric selective electrodes were designed, characterized, and successfully used for pholcodine determination. The design of the sensor device was based on the use of a screen-printed electrode modified with multiwalled carbon nanotubes (MWCNTs) as a solid-contact transducer. Tailored pholcodine (PHO) molecularly imprinted polymers (MIPs) were prepared, characterized, and used as sensory receptors in the presented potentiometric sensing devices. The sensors exhibited a sensitivity of 31.6 ± 0.5 mV/decade (n = 5, R2 = 0.9980) over the linear range of 5.5 × 10−6 M with a detection limit of 2.5 × 10−7 M. Real serum samples in addition to pharmaceutical formulations containing PHO were analyzed, and the results were compared with those obtained by the conventional standard liquid chromatographic approach. The presented analytical device showed an outstanding efficiency for fast, direct, and low-cost assessment of pholcodine levels in different matrices.


Author(s):  
Kathryn Holguin ◽  
Motahareh Mohammadiroudbari ◽  
Kaiqiang Qin ◽  
Chao Luo

Na-ion batteries (NIBs) are promising alternatives to Li-ion batteries (LIBs) due to the low cost, abundance, and high sustainability of sodium resources. However, the high performance of inorganic electrode materials...


Sign in / Sign up

Export Citation Format

Share Document